English

The trigonometric equation tan–1x = 3tan–1a has solution for ______. - Mathematics

Advertisements
Advertisements

Question

The trigonometric equation tan–1x = 3tan–1 a has solution for ______.

Options

  • `|a| ≤ 1/sqrt(3)`

  • `|a| > 1/sqrt(3)`

  • `|a| < 1/sqrt(3)`

  • all real value of a.

MCQ
Fill in the Blanks

Solution

The trigonometric equation tan–1x = 3tan–1a has solution for `underlinebb(|a| < 1/sqrt(3))`.

Explanation:

To solve the equation tan–1(x) = 3tan–1(a), we use the tangent function properties and transformations.

Let θ = tan–1(a).

Then:

x = tan(3θ)

Using the triple-angle formula for tangent:

tan(3θ) = `(3tan(θ) - tan^3(θ))/(1 - 3tan^3(θ))`

Since tan(θ) = a, substituting a in gives us:

x = `(3a - a^3)/(1 - 3a^2)`

For the function tan⁡−1(x) = 3tan−1(a) to have a solution, the argument of tan (which is 3θ) must be within the range of the tan function, which is `(-π/2, π/2)`.

Therefore, 3θ must also be `(-π/2, π/2)`.

Given that θ = tan−1(a) is within `(-π/2, π/2)`, the condition for 3θ to remain in this interval is:

`-π/6 < θ < π/6`

This translates to:

`-π/6 < tan^-1(a) < π/6`

Taking the tangent of the bounds:

`-1/sqrt(3) < a < 1/sqrt(3)`

Thus, the condition for a is:

`|a| < 1/sqrt(3)`

shaalaa.com
  Is there an error in this question or solution?
2024-2025 (April) Specimen Paper

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = 3 − 4x


Find gof and fog when f : R → R and g : R → R is defined by  f(x) = x2 + 2x − 3 and  g(x) = 3x − 4 .


Let f : R → R and g : R → R be defined by f(x) = + 1 and (x) = x − 1. Show that fog = gof = IR.


Find f −1 if it exists : f : A → B, where A = {0, −1, −3, 2}; B = {−9, −3, 0, 6} and f(x) = 3 x.


Find f −1 if it exists : f : A → B, where A = {1, 3, 5, 7, 9}; B = {0, 1, 9, 25, 49, 81} and f(x) = x2


Consider the function f : R→  [-9 , ∞ ]given by f(x) = 5x2 + 6x - 9. Prove that f is invertible with -1 (y) = `(sqrt(54 + 5y) -3)/5`             [CBSE 2015]


If f : A → Ag : A → A are two bijections, then prove that fog is an injection ?


Let C denote the set of all complex numbers. A function f : C → C is defined by f(x) = x3. Write f−1(1).


If f : R → R is defined by f(x) = x2, find f−1 (−25).


If f : R → R is defined by f(x) = 10 x − 7, then write f−1 (x).


If f(x) = x + 7 and g(x) = x − 7, x ∈ R, write fog (7).


Let the function

\[f : R - \left\{ - b \right\} \to R - \left\{ 1 \right\}\]

\[f\left( x \right) = \frac{x + a}{x + b}, a \neq b .\text{Then},\]

 


The function 

f : A → B defined by 

f (x) = - x2 + 6x - 8 is a bijection if 

 

 

 

 


A function f  from the set of natural numbers to integers defined by

`{([n-1]/2," when  n is  odd"   is ),(-n/2,when  n  is  even ) :}`

 

 


\[f : Z \to Z\]  be given by

 ` f (x) = {(x/2, ", if  x is even" ) ,(0 , ", if  x  is  odd "):}`

Then,  f is


The function \[f : R \to R\] defined by

\[f\left( x \right) = 6^x + 6^{|x|}\] is 

 


Let

 \[A = \left\{ x \in R : x \geq 1 \right\}\] The inverse of the function, 

\[f : A \to A\] given by

\[f\left( x \right) = 2^{x \left( x - 1 \right)} , is\]

 


Write about strlen() function.


If A = {a, b, c, d} and f = {a, b), (b, d), (c, a), (d, c)}, show that f is one-one from A onto A. Find f–1


Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not

h = {(1,4), (2, 5), (3, 5)}


Which of the following functions from Z into Z are bijections?


Let A = {0, 1} and N be the set of natural numbers. Then the mapping f: N → A defined by f(2n – 1) = 0, f(2n) = 1, ∀ n ∈ N, is onto.


Let f : [0, ∞) → [0, 2] be defined by `"f" ("x") = (2"x")/(1 + "x"),` then f is ____________.


A general election of Lok Sabha is a gigantic exercise. About 911 million people were eligible to vote and voter turnout was about 67%, the highest ever


Let I be the set of all citizens of India who were eligible to exercise their voting right in the general election held in 2019. A relation ‘R’ is defined on I as follows:

R = {(V1, V2) ∶ V1, V2 ∈ I and both use their voting right in the general election - 2019}

  • Mr. ’X’ and his wife ‘W’ both exercised their voting right in the general election-2019, Which of the following is true?

Let f: R → R defined by f(x) = 3x. Choose the correct answer


Function f: R → R, defined by f(x) = `x/(x^2 + 1)` ∀ x ∈ R is not


Let [x] denote the greatest integer ≤ x, where x ∈ R. If the domain of the real valued function f(x) = `sqrt((|[x]| - 2)/(|[x]| - 3)` is (–∞, a) ∪ [b, c) ∪ [4, ∞), a < b < c, then the value of a + b + c is ______.


If log102 = 0.3010.log103 = 0.4771 then the number of ciphers after decimal before a significant figure comes in `(5/3)^-100` is ______.


Let a and b are two positive integers such that b ≠ 1. Let g(a, b) = Number of lattice points inside the quadrilateral formed by lines x = 0, y = 0, x = b and y = a. f(a, b) = `[a/b] + [(2a)/b] + ... + [((b - 1)a)/b]`, then the value of `[(g(101, 37))/(f(101, 37))]` is ______.

(Note P(x, y) is lattice point if x, y ∈ I)

(where [.] denotes greatest integer function)


Let S = {1, 2, 3, 4, 5, 6, 7}. Then the number of possible functions f: S `rightarrow` S such that f(m.n) = f(m).f(n) for every m, n ∈ S and m.n ∈ S is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×