English

Find F −1 If It Exists : F : A → B, Where A = {1, 3, 5, 7, 9}; B = {0, 1, 9, 25, 49, 81} And F(X) = X2 - Mathematics

Advertisements
Advertisements

Question

Find f −1 if it exists : f : A → B, where A = {1, 3, 5, 7, 9}; B = {0, 1, 9, 25, 49, 81} and f(x) = x2

Solution

A = {1, 3, 5, 7, 9}; B = {0, 1, 9, 25, 49, 81} and f(x) = x2
Given: f(x) = x2
So, f = {(1, 1), (3, 9), (5, 25), (7,49), (9, 81)}
Clearly, is one-one.
But this is not onto because the element 0 in the co-domain (B) has no pre-image in the domain (A) .

⇒ f is not a bijection.
So, f -1does not exist.

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Functions - Exercise 2.4 [Page 68]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 2 Functions
Exercise 2.4 | Q 2.2 | Page 68

RELATED QUESTIONS

Check the injectivity and surjectivity of the following function:

f: Z → Z given by f(x) = x2


Check the injectivity and surjectivity of the following function:

f: R → R given by f(x) = x2


Find the number of all onto functions from the set {1, 2, 3, …, n} to itself.


Which of the following functions from A to B are one-one and onto?

 f2 = {(2, a), (3, b), (4, c)} ; A = {2, 3, 4}, B = {abc}


Let A = {−1, 0, 1} and f = {(xx2) : x ∈ A}. Show that f : A → A is neither one-one nor onto.


Classify the following function as injection, surjection or bijection :

 f : R → R, defined by f(x) = sinx


Let A = {1, 2, 3}. Write all one-one from A to itself.


If A = {1, 2, 3}, show that a onto function f : A → A must be one-one.


Verify associativity for the following three mappings : f : N → Z0 (the set of non-zero integers), g : Z0 → Q and h : Q → R given by f(x) = 2xg(x) = 1/x and h(x) = ex.


Find f −1 if it exists : f : A → B, where A = {0, −1, −3, 2}; B = {−9, −3, 0, 6} and f(x) = 3 x.


Show that the function f : Q → Q, defined by f(x) = 3x + 5, is invertible. Also, find f−1


Consider f : R+ → [−5, ∞) given by f(x) = 9x2 + 6x − 5. Show that f is invertible with `f^-1 (x) = (sqrt (x +6)-1)/3 .`


If f : R → R be defined by f(x) = x3 −3, then prove that f−1 exists and find a formula for f−1. Hence, find f−1(24) and f−1 (5).


A function f : R → R is defined as f(x) = x3 + 4. Is it a bijection or not? In case it is a bijection, find f−1 (3).


Consider the function f : R→  [-9 , ∞ ]given by f(x) = 5x2 + 6x - 9. Prove that f is invertible with -1 (y) = `(sqrt(54 + 5y) -3)/5`             [CBSE 2015]


If f : R → (−1, 1) defined by `f (x) = (10^x- 10^-x)/(10^x + 10 ^-x)` is invertible, find f−1.


Let A and B be two sets, each with a finite number of elements. Assume that there is an injective map from A to B and that there is an injective map from B to A. Prove that there is a bijection from A to B.


Which one of the following graphs represents a function?


Write the total number of one-one functions from set A = {1, 2, 3, 4} to set B = {abc}.


If f : R → R is given by f(x) = x3, write f−1 (1).


If f : R → R defined by f(x) = 3x − 4 is invertible, then write f−1 (x).


 \[f : A \to \text{B given by } 3^{ f\left( x \right)} + 2^{- x} = 4\] is a bijection, then

 

 

 

 


Which of the following functions from

\[A = \left\{ x : - 1 \leq x \leq 1 \right\}\]

to itself are bijections?

 

 

 


The  function f : [-1/2, 1/2, 1/2] → [-π /2,π/2], defined by f (x) = `sin^-1` (3x - `4x^3`), is

 


The function

\[f : R \to R, f\left( x \right) = x^2\]
 

If \[f : R \to R is given by f\left( x \right) = 3x - 5, then f^{- 1} \left( x \right)\] 

 


Let

 \[A = \left\{ x \in R : x \geq 1 \right\}\] The inverse of the function, 

\[f : A \to A\] given by

\[f\left( x \right) = 2^{x \left( x - 1 \right)} , is\]

 


If the function

\[f : R \to R\]  be such that

\[f\left( x \right) = x - \left[ x \right]\] where [x] denotes the greatest integer less than or equal to x, then \[f^{- 1} \left( x \right)\]

 


Let A be a finite set. Then, each injective function from A into itself is not surjective.


Let f: R → R be the function defined by f(x) = 2x – 3 ∀ x ∈ R. write f–1 


Are the following set of ordered pairs functions? If so, examine whether the mapping is injective or surjective.
{(a, b): a is a person, b is an ancestor of a}


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

k(x) = x2 


Using the definition, prove that the function f: A→ B is invertible if and only if f is both one-one and onto


Let f: R → R be the functions defined by f(x) = x3 + 5. Then f–1(x) is ______.


Given a function If as f(x) = 5x + 4, x ∈ R. If g : R → R is inverse of function ‘f then


`x^(log_5x) > 5` implies ______.


Let f: R→R be a polynomial function satisfying f(x + y) = f(x) + f(y) + 3xy(x + y) –1 ∀ x, y ∈ R and f'(0) = 1, then `lim_(x→∞)(f(2x))/(f(x)` is equal to ______.


Let S = {1, 2, 3, 4, 5, 6, 7}. Then the number of possible functions f: S `rightarrow` S such that f(m.n) = f(m).f(n) for every m, n ∈ S and m.n ∈ S is equal to ______.


Write the domain and range (principle value branch) of the following functions:

f(x) = tan–1 x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×