English

Let f: R → R be the functions defined by f(x) = x3 + 5. Then f–1(x) is ______. - Mathematics

Advertisements
Advertisements

Question

Let f: R → R be the functions defined by f(x) = x3 + 5. Then f–1(x) is ______.

Options

  • `(x + 5)^(1/3)`

  • `(x - 5)^(1/3)`

  • `(5 - x)^(1/3)`

  • 5 – x

MCQ
Fill in the Blanks

Solution

Let f: R → R be the functions defined by f(x) = x3 + 5. Then f–1(x) is `(x - 5)^(1/3)`.

Explanation:

We have, f(x) = x3 + 5 = y ....(Let)

⇒ y = x3 + 5

⇒  x3 = y – 5

⇒ x = `(y - 5)^(1/3)`

⇒ f–1(x) = `(x - 5)^(1/3)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Relations And Functions - Exercise [Page 15]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 1 Relations And Functions
Exercise | Q 40 | Page 15

RELATED QUESTIONS

Check the injectivity and surjectivity of the following function:

f: R → R given by f(x) = x2


Let A and B be sets. Show that f: A × B → B × A such that (a, b) = (b, a) is bijective function.


Let fR → be defined as f(x) = 10x + 7. Find the function gR → R such that g o f = f o = 1R.


Give an example of a function which is one-one but not onto ?


Classify the following function as injection, surjection or bijection : f : N → N given by f(x) = x3


Find the number of all onto functions from the set A = {1, 2, 3, ..., n} to itself.


Find gof and fog when f : R → R and g : R → R is defined by  f(x) = 2x + x2 and  g(x) = x3


Let f = {(1, −1), (4, −2), (9, −3), (16, 4)} and g = {(−1, −2), (−2, −4), (−3, −6), (4, 8)}. Show that gof is defined while fog is not defined. Also, find gof.


Give examples of two functions f : N → Z and g : Z → Z, such that gof is injective but gis not injective.


Find fog and gof  if : f (x) = x2 g(x) = cos x .


Find fog and gof  if : f(x) = sin−1 x, g(x) = x2


Find fog and gof  if : f(x)= x + 1, g (x) = 2x + 3 .


Find fog and gof  if : f(x) = `x^2` + 2 , g (x) = 1 − `1/ (1-x)`.


If f(x) = |x|, prove that fof = f.


Let \[f : \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right] \to\] A be defined by f(x) = sin x. If f is a bijection, write set A.


Let f : R → Rg : R → R be two functions defined by f(x) = x2 + x + 1 and g(x) = 1 − x2. Write fog (−2).


The function \[f : R \to R\] defined by

\[f\left( x \right) = 6^x + 6^{|x|}\] is 

 


Let  \[f\left( x \right) = x^2 and g\left( x \right) = 2^x\] Then, the solution set of the equation

\[fog \left( x \right) = gof \left( x \right)\] is 



If \[f : R \to R is given by f\left( x \right) = 3x - 5, then f^{- 1} \left( x \right)\] 

 


If  \[F : [1, \infty ) \to [2, \infty )\] is given by

\[f\left( x \right) = x + \frac{1}{x}, then f^{- 1} \left( x \right)\]

 


Let the function f: R → R be defined by f(x) = cosx, ∀ x ∈ R. Show that f is neither one-one nor onto


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

f(x) = `x/2`


The smallest integer function f(x) = [x] is ____________.


Let f : R → R be a function defined by f(x) `= ("e"^abs"x" - "e"^-"x")/("e"^"x" + "e"^-"x")` then f(x) is


Let g(x) = x2 – 4x – 5, then ____________.


If `f : R -> R^+  U {0}` be defined by `f(x) = x^2, x ∈ R`. The mapping is


Let f: R→R be a continuous function such that f(x) + f(x + 1) = 2, for all x ∈ R. If I1 = `int_0^8f(x)dx` and I2 = `int_(-1)^3f(x)dx`, then the value of I1 + 2I2 is equal to ______.


Let f(x) be a polynomial function of degree 6 such that `d/dx (f(x))` = (x – 1)3 (x – 3)2, then

Assertion (A): f(x) has a minimum at x = 1.

Reason (R): When `d/dx (f(x)) < 0, ∀  x ∈ (a - h, a)` and `d/dx (f(x)) > 0, ∀  x ∈ (a, a + h)`; where 'h' is an infinitesimally small positive quantity, then f(x) has a minimum at x = a, provided f(x) is continuous at x = a.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×