English

Give an Example of a Function Which is One-one but Not onto ? - Mathematics

Advertisements
Advertisements

Question

Give an example of a function which is one-one but not onto ?

Sum

Solution

which is one-one but not onto.

f: Z → Z given by f(x) = 3x + 2

Injectivity:
Let x and y be any two elements in the domain (Z), such that f(x) = f(y).

 f (x)= f(y)

⇒ 3x + 2 =3y + 2

⇒ 3x = 3y

⇒ x = y

⇒ f(x) = f(y) ⇒ x = y

So, f is one-one.

Surjectivity:
Let y be any element in the co-domain (Z), such that f(x) = y for some element x in Z(domain).

f(x) = y

 ⇒ 3x + 2 = y

⇒ 3x = y - 2

⇒ x= `(y - 2)/3`. It may not be in the domain (Z)

because if we take y = 3,

`x = (y - 2)/3 = (3-2)/3 = 1/3 ∉` domain Z.

So, for every element in the co domain there need not be any element in the domain such that f(x) = y.
Thus, f is not onto.

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Functions - Exercise 2.1 [Page 31]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 2 Functions
Exercise 2.1 | Q 1.1 | Page 31

RELATED QUESTIONS

Show that function f: R `rightarrow` {x ∈ R : −1 < x < 1} defined by f(x) = `x/(1 + |x|)`, x ∈ R is one-one and onto function.


Give an example of a function which is neither one-one nor onto ?


Which of the following functions from A to B are one-one and onto?

 f2 = {(2, a), (3, b), (4, c)} ; A = {2, 3, 4}, B = {abc}


Classify the following function as injection, surjection or bijection :

f : Q → Q, defined by f(x) = x3 + 1


Show that the function f : R − {3} → R − {2} given by f(x) = `(x-2)/(x-3)` is a bijection.


Let A = [-1, 1]. Then, discuss whether the following function from A to itself is one-one, onto or bijective : g(x) = |x|  


Let f : N → N be defined by

`f(n) = { (n+ 1, if n  is  odd),( n-1 , if n  is  even):}`

Show that f is a bijection. 

                      [CBSE 2012, NCERT]


Find  fog (2) and gof (1) when : f : R → R ; f(x) = x2 + 8 and g : R → Rg(x) = 3x3 + 1.


Give examples of two functions f : N → Z and g : Z → Z, such that gof is injective but gis not injective.


Find fog and gof  if : f(x) = sin−1 x, g(x) = x2


Find fog and gof  if : f(x) = `x^2` + 2 , g (x) = 1 − `1/ (1-x)`.


If f(x) = sin x and g(x) = 2x be two real functions, then describe gof and fog. Are these equal functions?


Find f −1 if it exists : f : A → B, where A = {0, −1, −3, 2}; B = {−9, −3, 0, 6} and f(x) = 3 x.


If A = {1, 2, 3, 4} and B = {abcd}, define any four bijections from A to B. Also give their inverse functions.


Let A and B be two sets, each with a finite number of elements. Assume that there is an injective map from A to B and that there is an injective map from B to A. Prove that there is a bijection from A to B.


If f : A → Ag : A → A are two bijections, then prove that fog is a surjection ?


If A = {1, 2, 3} and B = {ab}, write the total number of functions from A to B.


If f : C → C is defined by f(x) = x4, write f−1 (1).


Write the domain of the real function

`f (x) = sqrtx - [x] .`


Let f : R → R be the function defined by f(x) = 4x − 3 for all x ∈ R Then write f .   [NCERT EXEMPLAR]


If f(x) = 4 −( x - 7)3 then write f-1 (x).


A function f  from the set of natural numbers to integers defined by

`{([n-1]/2," when  n is  odd"   is ),(-n/2,when  n  is  even ) :}`

 

 


Let [x] denote the greatest integer less than or equal to x. If \[f\left( x \right) = \sin^{- 1} x, g\left( x \right) = \left[ x^2 \right]\text{  and } h\left( x \right) = 2x, \frac{1}{2} \leq x \leq \frac{1}{\sqrt{2}}\]

 


A function f: R→ R defined by f(x) = `(3x) /5 + 2`, x ∈ R. Show that f is one-one and onto. Hence find f−1.


Write about strcmp() function.


If f: R → R is defined by f(x) = x2 – 3x + 2, write f(f (x))


Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not

k = {(1,4), (2, 5)}


Using the definition, prove that the function f: A→ B is invertible if and only if f is both one-one and onto


Let f: `[2, oo)` → R be the function defined by f(x) = x2 – 4x + 5, then the range of f is ______.


Let f : R → R be defind by f(x) = `1/"x"  AA  "x" in "R".` Then f is ____________.


Let f : R `->` R be a function defined by f(x) = x3 + 4, then f is ______.


The domain of the function `"f"("x") = 1/(sqrt ({"sin x"} + {"sin" ( pi + "x")}))` where {.} denotes fractional part, is


The function f: R → R defined as f(x) = x3 is:


Let x is a real number such that are functions involved are well defined then the value of `lim_(t→0)[max{(sin^-1  x/3 + cos^-1  x/3)^2, min(x^2 + 4x + 7)}]((sin^-1t)/t)` where [.] is greatest integer function and all other brackets are usual brackets.


Let f: R→R be a polynomial function satisfying f(x + y) = f(x) + f(y) + 3xy(x + y) –1 ∀ x, y ∈ R and f'(0) = 1, then `lim_(x→∞)(f(2x))/(f(x)` is equal to ______.


Let f(1, 3) `rightarrow` R be a function defined by f(x) = `(x[x])/(1 + x^2)`, where [x] denotes the greatest integer ≤ x, Then the range of f is ______.


Let f(x) = ax (a > 0) be written as f(x) = f1(x) + f2(x), where f1(x) is an even function and f2(x) is an odd function. Then f1(x + y) + f1(x – y) equals ______.


The function f(x) = [x], where [x] denotes the greatest integer less than or equal to x; is continuous at ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×