English

Show that function f: R → {x ∈ R : −1 < x < 1} defined by f(x) = x1+|x|, x ∈ R is one-one and onto function. - Mathematics

Advertisements
Advertisements

Question

Show that function f: R {x ∈ R : −1 < x < 1} defined by f(x) = x1+|x|, x ∈ R is one-one and onto function.

Sum

Solution

It is given that f: R {x ∈ R: −1 < x < 1} is defined as f(x) =x1+|x|, x ∈ R.

Suppose f(x) = f(y), where x, y ∈ R.

x1+|x|=y1-|y|

=> 2xy =  x - y

x1+x=y1-y

⇒ x + xy = y + xy

⇒ x = y

Since x is positive and y is negative:

x > y 

⇒ x − y > 0

But, 2xy is negative.

Then, 2xyx-y.

Thus, the case of x being positive and y being negative can be ruled out.

Under a similar argument, x being negative and y being positive can also be ruled out

∴ x and y have to be either positive or negative.

When x and y are both positive, we have:

f(x)=f(y)=x1+|x|=y1-|y|

f(x)=f(y)x1+x=y1+y

=> x + xy = y + xy

=> x = y

When x and y are both negative, we have:

f(x)=f(y)x1-x=y1-y

=> x - xy = y - yx 

=> x = y

∴ f is one-one.

Now, let y ∈ R such that −1 < y < 1.

If x is negative, then there exists x=y1+yR such that

f(x)=f(y1+y)

=(y1+y)1+|y1+y|

=y1+y1+-y1+y

=y1+y-y

= y

If x is positive, then there exists x=y1-yR such that

f(x)=f(y1-y)=y1-y1+|(y1-y)|

=y1-y1+y1-y

=y1-y+y

= y

∴ f is onto.

Hence, f is one-one and onto.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Relations and Functions - Exercise 1.5 [Page 29]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 1 Relations and Functions
Exercise 1.5 | Q 4 | Page 29

RELATED QUESTIONS

Show that the function f in A=R-{23} defined as f(x)=4x+36x-4 is one-one and onto hence find f-1


Check the injectivity and surjectivity of the following function:

f: N → N given by f(x) = x2


Let f: R → R be defined as f(x) = 3x. Choose the correct answer.


Given examples of two functions fN → N and gN → N such that gof is onto but is not onto.

(Hint: Consider f(x) = x + 1 and g(x)={x-1ifx>11ifx=1


Let S = {abc} and T = {1, 2, 3}. Find F−1 of the following functions F from S to T, if it exists.

F = {(a, 2), (b, 1), (c, 1)}


 Which of the following functions from A to B are one-one and onto ?  

f3 = {(ax), (bx), (cz), (dz)} ; A = {abcd,}, B = {xyz}. 


If f : A → B is an injection, such that range of f = {a}, determine the number of elements in A.


If A = {1, 2, 3}, show that a one-one function f : A → A must be onto.


Find fog and gof  if : f(x) = c, c ∈ R, g(x) = sin x2


Let  f  be any real function and let g be a function given by g(x) = 2x. Prove that gof = f + f.


State with reason whether the following functions have inverse :
f : {1, 2, 3, 4} → {10} with f = {(1, 10), (2, 10), (3, 10), (4, 10)}


If f : R → R is defined by f(x) = x2, find f−1 (−25).


Let f:[π2,π2] A be defined by f(x) = sin x. If f is a bijection, write set A.


Let f : R → R+ be defined by f(x) = axa > 0 and a ≠ 1. Write f−1 (x).


If f(x) = x + 7 and g(x) = x − 7, x ∈ R, write fog (7).


If f : R → R be defined by f(x) = (3 − x3)1/3, then find fof (x).


Which one the following relations on A = {1, 2, 3} is a function?
f = {(1, 3), (2, 3), (3, 2)}, g = {(1, 2), (1, 3), (3, 1)}                                                                                                        [NCERT EXEMPLAR]


If a function g = {(1, 1), (2, 3), (3, 5), (4, 7)} is described by g(x) = αx+β  then find the values of α and β . [NCERT EXEMPLAR]


Let the function

f:R{b}R{1}

f(x)=x+ax+b,ab.Then,

 


Let

 A={xR:x1} The inverse of the function, 

f:AA given by

f(x)=2x(x1),is

 


Mark the correct alternative in the following question:
Let f : R→ R be defined as, f(x) =  {2x,ifx>3x2,if1<x33x,ifx1 

Then, find f( 1) + f(2) + f(4)

 


If f(x) = x+34x5,g(x)=3+5x4x1 then verify that (fog)(x) = x.


Let f, g: R → R be two functions defined as f(x) = |x| + x and g(x) = x – x ∀ x ∈ R. Then, find f o g and g o f


Let N be the set of natural numbers and the function f: N → N be defined by f(n) = 2n + 3 ∀ n ∈ N. Then f is ______.


Set A has 3 elements and the set B has 4 elements. Then the number of injective mappings that can be defined from A to B is ______.


Let f: R → R be defined by f(x) = 3x – 4. Then f–1(x) is given by ______.


Are the following set of ordered pairs functions? If so, examine whether the mapping is injective or surjective.
{(x, y): x is a person, y is the mother of x}


Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not

f = {(1, 4), (1, 5), (2, 4), (3, 5)}


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

h(x) = x|x|


Let f: R – {35} → R be defined by f(x) = 3x+25x-3. Then ______.


Let f : R R be a function defined by f(x) = x3 + 4, then f is ______.


The function f: R → R defined as f(x) = x3 is:


Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. Based on the given information, f is best defined as:


Let [x] denote the greatest integer ≤ x, where x ∈ R. If the domain of the real valued function f(x) = |[x]|-2|[x]|-3 is (–∞, a) ∪ [b, c) ∪ [4, ∞), a < b < c, then the value of a + b + c is ______.


Let f(n) = [13+3n100]n, where [n] denotes the greatest integer less than or equal to n. Then n=156f(n) is equal to ______.


Let f(x) be a polynomial of degree 3 such that f(k) = -2k for k = 2, 3, 4, 5. Then the value of 52 – 10f(10) is equal to ______.


The function f(x) = [x], where [x] denotes the greatest integer less than or equal to x; is continuous at ______.


The trigonometric equation tan–1x = 3tan–1 a has solution for ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.