English

Let f, g: R → R be two functions defined as f(x) = |x| + x and g(x) = x – x ∀ x ∈ R. Then, find f o g and g o f - Mathematics

Advertisements
Advertisements

Question

Let f, g: R → R be two functions defined as f(x) = |x| + x and g(x) = x – x ∀ x ∈ R. Then, find f o g and g o f

Sum

Solution

Here f(x) = |x| + x which can be redefined as

f(x) = `{(2x,  "if"  x ≥ 0),(0,  "if"  x < 0):}`

Similarly, the function g defined by g(x) = |x| – x may be redefined as

g(x) = `{(0,  "if"  x ≥ 0),(-2x,  "if"  x < 0):}`

Therefore, g o f gets defined as:

For x ≥ 0, (g o f) (x) = g (f(x) = g (2x) = 0

and for x < 0, (g o f) (x) = g (f(x) = g (0) = 0.

Consequently, we have (g o f) (x) = 0, ∀ x ∈ R.

Similarly, f o g gets defined as:

For x ≥ 0, (f o g) (x) = f (g(x) = f(0) = 0,

and for x < 0, (f o g) (x) = f (g(x)) = f(–2x) = – 4x.

i.e. (f o g) (x) = `{(0, x > 0),(-4x, x < 0):}`

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Relations And Functions - Solved Examples [Page 6]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 1 Relations And Functions
Solved Examples | Q 14 | Page 6

RELATED QUESTIONS

Check the injectivity and surjectivity of the following function:

f: R → R given by f(x) = x2


Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. Show that f is one-one.


Let fR → be defined as f(x) = 10x + 7. Find the function gR → R such that g o f = f o = 1R.


Show that function f: R `rightarrow` {x ∈ R : −1 < x < 1} defined by f(x) = `x/(1 + |x|)`, x ∈ R is one-one and onto function.


Classify the following function as injection, surjection or bijection :  f : Z → Z given by f(x) = x2


Classify the following function as injection, surjection or bijection :

f : Z → Z, defined by f(x) = x2 + x


Classify the following function as injection, surjection or bijection :

 f : R → R, defined by f(x) = sinx


If f : A → B and g : B → C are one-one functions, show that gof is a one-one function.


Find fog and gof  if : f (x) = x+1, g (x) = sin x .


Find fog and gof  if : f(x)= x + 1, g (x) = 2x + 3 .


Let A = {1, 2, 3, 4}; B = {3, 5, 7, 9}; C = {7, 23, 47, 79} and f : A → Bg : B → C be defined as f(x) = 2x + 1 and g(x) = x2 − 2. Express (gof)−1 and f−1 og−1 as the sets of ordered pairs and verify that (gof)−1 = f−1 og−1.


Let f be an invertible real function. Write ( f-1  of ) (1) + ( f-1  of ) (2) +..... +( f-1 of ) (100 )


If f(x) = x + 7 and g(x) = x − 7, x ∈ R, write fog (7).


Write the domain of the real function f defined by f(x) = `sqrt (25 -x^2)`   [NCERT EXEMPLAR]


If a function g = {(1, 1), (2, 3), (3, 5), (4, 7)} is described by g(x) = \[\alpha x + \beta\]  then find the values of \[\alpha\] and \[ \beta\] . [NCERT EXEMPLAR]


Let M be the set of all 2 × 2 matrices with entries from the set R of real numbers. Then, the function f : M→ R defined by f(A) = |A| for every A ∈ M, is

 


Let

 \[A = \left\{ x \in R : x \geq 1 \right\}\] The inverse of the function, 

\[f : A \to A\] given by

\[f\left( x \right) = 2^{x \left( x - 1 \right)} , is\]

 


Let \[f\left(x\right) = x^3\] be a function with domain {0, 1, 2, 3}. Then domain of \[f^{-1}\] is ______.


Mark the correct alternative in the following question:

Let f : → R be given by f(x) = tanx. Then, f-1(1) is

 

 


Let D be the domain of the real valued function f defined by f(x) = `sqrt(25 - x^2)`. Then, write D


Let f: R → R be the function defined by f(x) = 2x – 3 ∀ x ∈ R. write f–1 


Are the following set of ordered pairs functions? If so, examine whether the mapping is injective or surjective.
{(a, b): a is a person, b is an ancestor of a}


Let f : R → R be defind by f(x) = `1/"x"  AA  "x" in "R".` Then f is ____________.


Let f: R → R defined by f(x) = x4. Choose the correct answer


Let f: R → R defined by f(x) = 3x. Choose the correct answer


If f: [0, 1]→[0, 1] is defined by f(x) = `(x + 1)/4` and `d/(dx) underbrace(((fofof......of)(x)))_("n"  "times")""|_(x = 1/2) = 1/"m"^"n"`, m ∈ N, then the value of 'm' is ______.


The graph of the function y = f(x) is symmetrical about the line x = 2, then ______.


Find the domain of sin–1 (x2 – 4).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×