English

If F : a → B and G : B → C Are One-one Functions, Show that Gof is a One-one Function. - Mathematics

Advertisements
Advertisements

Question

If f : A → B and g : B → C are one-one functions, show that gof is a one-one function.

Solution

Given,  f : A → B and g : B → C are one - one.
Then, gof : A → B

Let us take two elements x and y from A, such that

(gof) (x(gof) (y)

⇒ g (f (x)g (f (y))

⇒ f (xf (y) (As, g is one-one)

⇒ (As, f is one-one)

Hence, gof is one-one.

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Functions - Exercise 2.2 [Page 46]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 2 Functions
Exercise 2.2 | Q 13 | Page 46

RELATED QUESTIONS

Show that the function f: R* → R* defined by `f(x) = 1/x` is one-one and onto, where R* is the set of all non-zero real numbers. Is the result true if the domain R* is replaced by N, with co-domain being same as R?


Check the injectivity and surjectivity of the following function:

f: N → N given by f(x) = x2


Let fR → be defined as f(x) = 10x + 7. Find the function gR → R such that g o f = f o = 1R.


Show that the function f: R → R given by f(x) = x3 is injective.


Given examples of two functions fN → N and gN → N such that gof is onto but is not onto.

(Hint: Consider f(x) = x + 1 and `g(x) = {(x-1, ifx >1),(1, if x = 1):}`


Let A = {−1, 0, 1, 2}, B = {−4, −2, 0, 2} and f, g: A → B be functions defined by f(x) = x2 − x, x ∈ A and g(x) = `2|x - 1/2|- 1, x in A`. Are f and g equal?

Justify your answer. (Hint: One may note that two functions f: A → B and g: A → B such that f(a) = g(a) ∀ a ∈ A are called equal functions).


Which of the following functions from A to B are one-one and onto?

 f2 = {(2, a), (3, b), (4, c)} ; A = {2, 3, 4}, B = {abc}


Let A = {−1, 0, 1} and f = {(xx2) : x ∈ A}. Show that f : A → A is neither one-one nor onto.


Classify the following function as injection, surjection or bijection :  f : Z → Z given by f(x) = x3


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = x3 + 1


If f : A → B is an injection, such that range of f = {a}, determine the number of elements in A.


Find the number of all onto functions from the set A = {1, 2, 3, ..., n} to itself.


Show that if f1 and f2 are one-one maps from R to R, then the product f1 × f2 : R → R defined by (f1 × f2) (x) = f1 (x) f2 (x) need not be one - one.


Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of each of the following:
(i) an injective map from A to B
(ii) a mapping from A to B which is not injective
(iii) a mapping from A to B.


Find fog and gof  if : f (x) = |x|, g (x) = sin x .


Find fog and gof  if : f (x) = x+1, g(x) = `e^x`

.


if f (x) = `sqrt (x +3) and  g (x) = x ^2 + 1` be two real functions, then find fog and gof.


Find f −1 if it exists : f : A → B, where A = {0, −1, −3, 2}; B = {−9, −3, 0, 6} and f(x) = 3 x.


If f : R → R be defined by f(x) = x3 −3, then prove that f−1 exists and find a formula for f−1. Hence, find f−1(24) and f−1 (5).


If f : A → Ag : A → A are two bijections, then prove that fog is a surjection ?


Let \[f : \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \to R\]  be a function defined by f(x) = cos [x]. Write range (f).


The function \[f : [0, \infty ) \to \text {R given by } f\left( x \right) = \frac{x}{x + 1} is\]

 

 


The function

\[f : R \to R, f\left( x \right) = x^2\]
 

\[f : Z \to Z\]  be given by

 ` f (x) = {(x/2, ", if  x is even" ) ,(0 , ", if  x  is  odd "):}`

Then,  f is


Mark the correct alternative in the following question:
If the set A contains 7 elements and the set B contains 10 elements, then the number one-one functions from A to B is


Write about strcmp() function.


Set A has 3 elements and the set B has 4 elements. Then the number of injective mappings that can be defined from A to B is ______.


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

g(x) = |x|


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

k(x) = x2 


If f(x) = (4 – (x – 7)3}, then f–1(x) = ______.


Let f : R → R be a function defined by f(x) `= ("e"^abs"x" - "e"^-"x")/("e"^"x" + "e"^-"x")` then f(x) is


The domain of the function `"f"("x") = 1/(sqrt ({"sin x"} + {"sin" ( pi + "x")}))` where {.} denotes fractional part, is


The function f: R → R defined as f(x) = x3 is:


If f: R→R is a function defined by f(x) = `[x - 1]cos((2x - 1)/2)π`, where [ ] denotes the greatest integer function, then f is ______.


Let [x] denote the greatest integer ≤ x, where x ∈ R. If the domain of the real valued function f(x) = `sqrt((|[x]| - 2)/(|[x]| - 3)` is (–∞, a) ∪ [b, c) ∪ [4, ∞), a < b < c, then the value of a + b + c is ______.


Let f(x) = ax (a > 0) be written as f(x) = f1(x) + f2(x), where f1(x) is an even function and f2(x) is an odd function. Then f1(x + y) + f1(x – y) equals ______.


Let a function `f: N rightarrow N` be defined by

f(n) = `{:[(2n",", n = 2","  4","  6","  8","......),(n - 1",", n = 3","  7","  11","  15","......),((n + 1)/2",", n = 1","  5","  9","  13","......):}`

then f is ______.


Find the domain of sin–1 (x2 – 4).


If f : R `rightarrow` R is defined by `f(x) = (2x - 7)/4`, show that f(x) is one-one and onto.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×