English

Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective: g(x) = |x| - Mathematics

Advertisements
Advertisements

Question

Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

g(x) = |x|

Sum

Solution

Given, A = [–1, 1]

Let g(x1) = g(x2)

|x1| = |x2|

x1 = ± x2

So, g(x) is not one-one

Also g(x) = |x| ≥ 0, for all real x

Hence, the range is [0, 1], which is subset of co-domain ‘A’

So, f(x) is not onto.

Therefore, f(x) is not bijective.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Relations And Functions - Exercise [Page 12]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 1 Relations And Functions
Exercise | Q 21. (ii) | Page 12

RELATED QUESTIONS

Let A = {−1, 0, 1, 2}, B = {−4, −2, 0, 2} and f, g: A → B be functions defined by f(x) = x2 − x, x ∈ A and g(x) = `2|x - 1/2|- 1, x in A`. Are f and g equal?

Justify your answer. (Hint: One may note that two functions f: A → B and g: A → B such that f(a) = g(a) ∀ a ∈ A are called equal functions).


Classify the following function as injection, surjection or bijection :

f : Z → Z, defined by f(x) = x2 + x


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = sin2x + cos2x


Let A = [-1, 1]. Then, discuss whether the following function from A to itself is one-one, onto or bijective : `f (x) = x/2`


If A = {1, 2, 3}, show that a onto function f : A → A must be one-one.


Give examples of two surjective functions f1 and f2 from Z to Z such that f1 + f2 is not surjective.


Find gof and fog when f : R → R and g : R → R is defined by  f(x) = x2 + 8 and g(x) = 3x3 + 1 .


Find gof and fog when f : R → R and g : R → R is  defined by  f(x) = 8x3 and  g(x) = x1/3.


Consider f : N → Ng : N → N and h : N → R defined as f(x) = 2xg(y) = 3y + 4 and h(z) = sin z for all xyz ∈ N. Show that ho (gof) = (hogof.


Find fog and gof  if : f(x) = c, c ∈ R, g(x) = sin `x^2`


Find fog and gof  if : f(x) = `x^2` + 2 , g (x) = 1 − `1/ (1-x)`.


If f(x) = sin x and g(x) = 2x be two real functions, then describe gof and fog. Are these equal functions?


Find f −1 if it exists : f : A → B, where A = {0, −1, −3, 2}; B = {−9, −3, 0, 6} and f(x) = 3 x.


Consider f : R → R+ → [4, ∞) given by f(x) = x2 + 4. Show that f is invertible with inverse f−1 of f given by f−1 `(x)= sqrt (x-4)` where R+ is the set of all non-negative real numbers.


Let A and B be two sets, each with a finite number of elements. Assume that there is an injective map from A to B and that there is an injective map from B to A. Prove that there is a bijection from A to B.


Write the total number of one-one functions from set A = {1, 2, 3, 4} to set B = {abc}.


If f : C → C is defined by f(x) = x2, write f−1 (−4). Here, C denotes the set of all complex numbers.


If f : R → R defined by f(x) = 3x − 4 is invertible, then write f−1 (x).


Write the domain of the real function

`f (x) = 1/(sqrt([x] - x)`.


If f : R → R is defined by f(x) = 3x + 2, find f (f (x)).


Let A = {abcd} and f : A → A be given by f = {( a,b ),( b , d ),( c , a ) , ( d , c )} write `f^-1`. [NCERT EXEMPLAR]


Let the function

\[f : R - \left\{ - b \right\} \to R - \left\{ 1 \right\}\]

\[f\left( x \right) = \frac{x + a}{x + b}, a \neq b .\text{Then},\]

 


The function

\[f : R \to R, f\left( x \right) = x^2\]
 

Let

\[f : [2, \infty ) \to X\] be defined by

\[f\left( x \right) = 4x - x^2\] Then, f is invertible if X =

 


Let [x] denote the greatest integer less than or equal to x. If \[f\left( x \right) = \sin^{- 1} x, g\left( x \right) = \left[ x^2 \right]\text{  and } h\left( x \right) = 2x, \frac{1}{2} \leq x \leq \frac{1}{\sqrt{2}}\]

 


Let \[f\left(x\right) = x^3\] be a function with domain {0, 1, 2, 3}. Then domain of \[f^{-1}\] is ______.


Let R be the set of real numbers and f: R → R be the function defined by f(x) = 4x + 5. Show that f is invertible and find f–1.


Consider the set A containing n elements. Then, the total number of injective functions from A onto itself is ______


Let f : R → R be defind by f(x) = `1/"x"  AA  "x" in "R".` Then f is ____________.


Let n(A) = 4 and n(B) = 6, Then the number of one – one functions from 'A' to 'B' is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×