English

Find Gof And Fog When F : R → R And G : R → R Is Defined By F(X) = 8x3 And G(X) = X1/3. - Mathematics

Advertisements
Advertisements

Question

Find gof and fog when f : R → R and g : R → R is  defined by  f(x) = 8x3 and  g(x) = x1/3.

Solution

Given, f : R → R and g : R → R
So, gof : R → R  and fog : R → R

f(x) = 8x3 and g(x) = x1/3

(gof) (x)

= g (f (x))

= g (8x3)

=`(8x^3)^(1/3)`

= `[(2x)^3]^(1/3)`

= 2x

(fog) (x)

= f (g (x))

=` f (x^(1/3))`

=` 8 (x^(1/3))^3`

= 8x

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Functions - Exercise 2.2 [Page 46]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 2 Functions
Exercise 2.2 | Q 1.6 | Page 46

RELATED QUESTIONS

Show that the function f: R* → R* defined by `f(x) = 1/x` is one-one and onto, where R* is the set of all non-zero real numbers. Is the result true if the domain R* is replaced by N, with co-domain being same as R?


Check the injectivity and surjectivity of the following function:

f: N → N given by f(x) = x2


Check the injectivity and surjectivity of the following function:

f: R → R given by f(x) = x2


Let f: R → R be defined as f(x) = 3x. Choose the correct answer.


Let S = {abc} and T = {1, 2, 3}. Find F−1 of the following functions F from S to T, if it exists.

F = {(a, 3), (b, 2), (c, 1)} 


Give an example of a function which is neither one-one nor onto ?


Classify the following function as injection, surjection or bijection : f : N → N given by f(x) = x2


Classify the following function as injection, surjection or bijection :

f : Q − {3} → Q, defined by `f (x) = (2x +3)/(x-3)`


Show that the function f : R − {3} → R − {2} given by f(x) = `(x-2)/(x-3)` is a bijection.


Find the number of all onto functions from the set A = {1, 2, 3, ..., n} to itself.


If f : A → B and g : B → C are one-one functions, show that gof is a one-one function.


Find fog and gof  if : f(x) = c, c ∈ R, g(x) = sin `x^2`


Let

f (x) =`{ (1 + x, 0≤ x ≤ 2) , (3 -x , 2 < x ≤ 3):}`

Find fof.


Let A = {1, 2, 3, 4}; B = {3, 5, 7, 9}; C = {7, 23, 47, 79} and f : A → Bg : B → C be defined as f(x) = 2x + 1 and g(x) = x2 − 2. Express (gof)−1 and f−1 og−1 as the sets of ordered pairs and verify that (gof)−1 = f−1 og−1.


Consider f : R → R+ → [4, ∞) given by f(x) = x2 + 4. Show that f is invertible with inverse f−1 of f given by f−1 `(x)= sqrt (x-4)` where R+ is the set of all non-negative real numbers.


A function f : R → R is defined as f(x) = x3 + 4. Is it a bijection or not? In case it is a bijection, find f−1 (3).


Let A = {x &epsis; R | −1 ≤ x ≤ 1} and let f : A → Ag : A → A be two functions defined by f(x) = x2 and g(x) = sin (π x/2). Show that g−1 exists but f−1 does not exist. Also, find g−1.


Let f be a function from R to R, such that f(x) = cos (x + 2). Is f invertible? Justify your answer.


 If f : R → R be defined by f(x) = x4, write f−1 (1).

Let fg : R → R be defined by f(x) = 2x + l and g(x) = x2−2 for all x

∈ R, respectively. Then, find gof.  [NCERT EXEMPLAR]


Let

\[f : R \to R\]
\[f\left( x \right) = \frac{x^2 - 8}{x^2 + 2}\]
Then,  f is


The inverse of the function

\[f : R \to \left\{ x \in R : x < 1 \right\}\] given by

\[f\left( x \right) = \frac{e^x - e^{- x}}{e^x + e^{- x}}\] is 

 


If  \[F : [1, \infty ) \to [2, \infty )\] is given by

\[f\left( x \right) = x + \frac{1}{x}, then f^{- 1} \left( x \right)\]

 


If  \[f\left( x \right) = \sin^2 x\] and the composite function   \[g\left( f\left( x \right) \right) = \left| \sin x \right|\] then g(x) is equal to


Let 
\[f : R \to R\]  be given by \[f\left( x \right) = x^2 - 3\] Then, \[f^{- 1}\] is given by 

 


Mark the correct alternative in the following question:
Let A = {1, 2, ... , n} and B = {a, b}. Then the number of subjections from A into B is


Mark the correct alternative in the following question:
If the set A contains 7 elements and the set B contains 10 elements, then the number one-one functions from A to B is


Write about strlen() function.


Let f: R → R be the function defined by f(x) = 2x – 3 ∀ x ∈ R. write f–1 


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

h(x) = x|x|


Let A = {1, 2, 3, ...n} and B = {a, b}. Then the number of surjections from A into B is ______.


Let f: R → R be the functions defined by f(x) = x3 + 5. Then f–1(x) is ______.


Let f: R → R be given by f(x) = tan x. Then f–1(1) is ______.


The mapping f : N → N is given by f(n) = 1 + n2, n ∈ N when N is the set of natural numbers is ____________.


Let f : [0, ∞) → [0, 2] be defined by `"f" ("x") = (2"x")/(1 + "x"),` then f is ____________.


If f: R → R given by f(x) =(3 − x3)1/3, find f0f(x)


Prove that the function f is surjective, where f: N → N such that `f(n) = {{:((n + 1)/2",", if "n is odd"),(n/2",", if  "n is even"):}` Is the function injective? Justify your answer.


If log102 = 0.3010.log103 = 0.4771 then the number of ciphers after decimal before a significant figure comes in `(5/3)^-100` is ______.


If f: [0, 1]→[0, 1] is defined by f(x) = `(x + 1)/4` and `d/(dx) underbrace(((fofof......of)(x)))_("n"  "times")""|_(x = 1/2) = 1/"m"^"n"`, m ∈ N, then the value of 'm' is ______.


Let f(n) = `[1/3 + (3n)/100]n`, where [n] denotes the greatest integer less than or equal to n. Then `sum_(n = 1)^56f(n)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×