Advertisements
Advertisements
Question
Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:
h(x) = x|x|
Solution
Given, A = [–1, 1]
Let h(x1) = h(x2)
x1|x1| = x2|x2|
If x1, x2 > 0
x12 = x22
x12 – x22 = 0
(x1 – x2)(x1 + x2) = 0
x1 = x2 (as x1 + x2 ≠ 0)
Similarly for x1, x2 < 0, we have x1 = x2
It’s clearly seen that for x1 and x2 of opposite sign, x1 ≠ x2.
Hence, f(x) is one-one.
For x ∈ [0, 1], f(x) = x2 ∈ [0, 1]
For x < 0, f(x) = – x2 ∈ [–1, 0)
Hence, the range is [–1, 1].
So, h(x) is onto.
Therefore, h(x) is bijective.
APPEARS IN
RELATED QUESTIONS
Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. Show that f is one-one.
Following the case, state whether the function is one-one, onto, or bijective. Justify your answer.
f: R → R defined by f(x) = 1 + x2
Show that the function f: R → R given by f(x) = x3 is injective.
Give examples of two functions f: N → Z and g: Z → Z such that g o f is injective but gis not injective.
(Hint: Consider f(x) = x and g(x) =|x|)
Give an example of a function which is neither one-one nor onto ?
Classify the following function as injection, surjection or bijection :
f : Z → Z, defined by f(x) = x − 5
Classify the following function as injection, surjection or bijection :
f : R → R, defined by f(x) = 5x3 + 4
Classify the following function as injection, surjection or bijection :
f : R → R, defined by f(x) = 3 − 4x
Verify associativity for the following three mappings : f : N → Z0 (the set of non-zero integers), g : Z0 → Q and h : Q → R given by f(x) = 2x, g(x) = 1/x and h(x) = ex.
Give examples of two functions f : N → Z and g : Z → Z, such that gof is injective but gis not injective.
If f : A → B and g : B → C are one-one functions, show that gof is a one-one function.
Let f, g, h be real functions given by f(x) = sin x, g (x) = 2x and h (x) = cos x. Prove that fog = go (fh).
If f, g : R → R be two functions defined as f(x) = |x| + x and g(x) = |x|- x, ∀x∈R" .Then find fog and gof. Hence find fog(–3), fog(5) and gof (–2).
Let f : R `{- 4/3} `- 43 →">→ R be a function defined as f(x) = `(4x)/(3x +4)` . Show that f : R - `{-4/3}`→ Rang (f) is one-one and onto. Hence, find f -1.
If f : C → C is defined by f(x) = x2, write f−1 (−4). Here, C denotes the set of all complex numbers.
Let
If \[f : R \to R is given by f\left( x \right) = 3x - 5, then f^{- 1} \left( x \right)\]
The inverse of the function
\[f : R \to \left\{ x \in R : x < 1 \right\}\] given by
\[f\left( x \right) = \frac{e^x - e^{- x}}{e^x + e^{- x}}\] is
Which function is used to check whether a character is alphanumeric or not?
Let the function f: R → R be defined by f(x) = 4x – 1, ∀ x ∈ R. Then, show that f is one-one.
Set A has 3 elements and the set B has 4 elements. Then the number of injective mappings that can be defined from A to B is ______.
Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not
h = {(1,4), (2, 5), (3, 5)}
Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:
f(x) = `x/2`
Let f: R → R be the functions defined by f(x) = x3 + 5. Then f–1(x) is ______.
If N be the set of all-natural numbers, consider f: N → N such that f(x) = 2x, ∀ x ∈ N, then f is ____________.
The domain of the function `"f"("x") = 1/(sqrt ({"sin x"} + {"sin" ( pi + "x")}))` where {.} denotes fractional part, is
If `f : R -> R^+ U {0}` be defined by `f(x) = x^2, x ∈ R`. The mapping is
A function f: x → y is said to be one – one (or injective) if:
Which one of the following graphs is a function of x?
![]() |
![]() |
Graph A | Graph B |