X, ∀X ∈ R .Then Find Fog and Gof. Hence Find Fog(–3), Fog(5) and Gof (–2). - Mathematics | Shaalaa.com" /> X, ∀X ∈ R .Then Find Fog and Gof. Hence Find Fog(–3), Fog(5) and Gof (–2). " /> X, ∀X ∈ R .Then Find Fog and Gof. Hence Find Fog(–3), Fog(5) and Gof (–2)., Types of Functions" />
English

If F, G : R → R Be Two Functions Defined As F(X) = |X| + X And G(X) = |X| X, ∀X∈R" > X, ∀X ∈ R .Then Find Fog and Gof. Hence Find Fog(–3), Fog(5) and Gof (–2). - Mathematics

Advertisements
Advertisements

Question

 If f, g : R → R be two functions defined as f(x) = |x| + x and g(x) = |x|- x, ∀x∈R" .Then find fog and gof. Hence find fog(–3), fog(5) and gof (–2).

Sum

Solution

Given: f(x) = |x| + x 
and g(x) = |x| -x, ∀x ∈ R

fog = f(g(x)) = | g (x) | + g(x)

                    = ||x| − x|+(|x| − x)

Therefore,

f( g(x)) = `{ (0               x ≥ 0), (4x              x <0):}`

f( g(x)) = `{ (4x               x > 0), (0            x ≥ 0):}`

gof =  g (f(x)) = |f(x)| − f (x)

                      = ||x|+x| − (|x|+x)

g(f(x)) = `{(0              x ≥ 0), (0             x < 0):}`

Therefore, g (f(x)) = gof = 0

Now, fog(−3) =(4)(−3) = −12                                (since, fog = 4x for x < 0)

fog (5) = 0                                                              (since, fog = 0 for x ≥ 0)

 gof(−2) = 0                                                           (since, gof = 0 for x < 0)

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Functions - Exercise 2.3 [Page 55]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 2 Functions
Exercise 2.3 | Q 13 | Page 55

RELATED QUESTIONS

Let A = {−1, 0, 1, 2}, B = {−4, −2, 0, 2} and f, g: A → B be functions defined by f(x) = x2 − x, x ∈ A and g(x) = `2|x - 1/2|- 1, x in A`. Are f and g equal?

Justify your answer. (Hint: One may note that two functions f: A → B and g: A → B such that f(a) = g(a) ∀ a ∈ A are called equal functions).


Let A = {−1, 0, 1} and f = {(xx2) : x ∈ A}. Show that f : A → A is neither one-one nor onto.


Classify the following function as injection, surjection or bijection :  f : Z → Z given by f(x) = x2


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = 1 + x2


Find fog and gof  if : f(x) = `x^2` + 2 , g (x) = 1 − `1/ (1-x)`.


Let f(x) = x2 + x + 1 and g(x) = sin x. Show that fog ≠ gof.


   if `f (x) = sqrt(1-x)` and g(x) = `log_e` x are two real functions, then describe functions fog and gof.


State with reason whether the following functions have inverse :
f : {1, 2, 3, 4} → {10} with f = {(1, 10), (2, 10), (3, 10), (4, 10)}


If A = {abc} and B = {−2, −1, 0, 1, 2}, write the total number of one-one functions from A to B.


If f : R → R is given by f(x) = x3, write f−1 (1).


If f : C → C is defined by f(x) = (x − 2)3, write f−1 (−1).


Let \[f : \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right] \to\] A be defined by f(x) = sin x. If f is a bijection, write set A.


Let f : R → Rg : R → R be two functions defined by f(x) = x2 + x + 1 and g(x) = 1 − x2. Write fog (−2).


Write whether f : R → R, given by `f(x) = x + sqrtx^2` is one-one, many-one, onto or into.


Let f : R → R be the function defined by f(x) = 4x − 3 for all x ∈ R Then write f .   [NCERT EXEMPLAR]


Write the domain of the real function f defined by f(x) = `sqrt (25 -x^2)`   [NCERT EXEMPLAR]


\[f : R \to R \text{given by} f\left( x \right) = x + \sqrt{x^2} \text{ is }\]

 

 


Let

f : R → R be given by

\[f\left( x \right) = \left[ x^2 \right] + \left[ x + 1 \right] - 3\]

where [x] denotes the greatest integer less than or equal to x. Then, f(x) is
 


(d) one-one and onto


The function \[f : [0, \infty ) \to \text {R given by } f\left( x \right) = \frac{x}{x + 1} is\]

 

 


A function f  from the set of natural numbers to integers defined by

`{([n-1]/2," when  n is  odd"   is ),(-n/2,when  n  is  even ) :}`

 

 


\[f : R \to R\] is defined by

\[f\left( x \right) = \frac{e^{x^2} - e^{- x^2}}{e^{x^2 + e^{- x^2}}} is\]

 


Let  \[f\left( x \right) = \frac{1}{1 - x} . \text{Then}, \left\{ f o \left( fof \right) \right\} \left( x \right)\]

 


Let \[f\left(x\right) = x^3\] be a function with domain {0, 1, 2, 3}. Then domain of \[f^{-1}\] is ______.


Mark the correct alternative in the following question:

If the set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is


Let f: R → R be the function defined by f(x) = 4x – 3 ∀ x ∈ R. Then write f–1 


Let f: R → R be defined by f(x) = x2 + 1. Then, pre-images of 17 and – 3, respectively, are ______.


Consider the set A containing n elements. Then, the total number of injective functions from A onto itself is ______


Let A be a finite set. Then, each injective function from A into itself is not surjective.


For sets A, B and C, let f: A → B, g: B → C be functions such that g o f is injective. Then both f and g are injective functions.


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

h(x) = x|x|


Let A = {1, 2, 3, ...n} and B = {a, b}. Then the number of surjections from A into B is ______.


The function f : R → R defined by f(x) = 3 – 4x is ____________.


Let f : R → R be defind by f(x) = `1/"x"  AA  "x" in "R".` Then f is ____________.


Let f : R → R be a function defined by f(x) `= ("e"^abs"x" - "e"^-"x")/("e"^"x" + "e"^-"x")` then f(x) is


The domain of the function `"f"("x") = 1/(sqrt ({"sin x"} + {"sin" ( pi + "x")}))` where {.} denotes fractional part, is


Given a function If as f(x) = 5x + 4, x ∈ R. If g : R → R is inverse of function ‘f then


Let f: R → R defined by f(x) = 3x. Choose the correct answer


If f; R → R f(x) = 10x + 3 then f–1(x) is:


If A = {x ∈ R: |x – 2| > 1}, B = `{x ∈ R : sqrt(x^2 - 3) > 1}`, C = {x ∈ R : |x – 4| ≥ 2} and Z is the set of all integers, then the number of subsets of the set (A ∩ B ∩ C) C ∩ Z is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×