Advertisements
Advertisements
Question
Let \[f\left( x \right) = \frac{1}{1 - x} . \text{Then}, \left\{ f o \left( fof \right) \right\} \left( x \right)\]
Options
\[\text{x for all x} \in R\]
\[\text{x for all x} \in R - \left\{ 1 \right\}\]
\[\text{x for all x} \in R - \left\{ 0, 1 \right\}\]
none of these
Solution
\[\text{Domain of f}:\]
\[1 - x \neq 0\]
\[ \Rightarrow x \neq 1\]
\[\text{Domain of f} = R - \left\{ 1 \right\}\]
\[\text{Range of f}: \]
\[y = \frac{1}{1 - x}\]
\[ \Rightarrow 1 - x = \frac{1}{y}\]
\[ \Rightarrow x = 1 - \frac{1}{y}\]
\[ \Rightarrow x = \frac{y - 1}{y}\]
\[ \Rightarrow y \neq 0\]
\[\text{Range of f} = R - \left\{ 0 \right\}\]
\[So,f: R - \left\{ 1 \right\} \to R - \left\{ 0 \right\} andf: R - \left\{ 1 \right\} \to R - \left\{ 0 \right\} \]
\[\text{Range of f is not a subset of the domain of f}.\] \[\text{Domain}\left( fof \right)=\left\{ x: x\text{in domain of f and f}\left( x \right) \ \text{in domain of f} \right\}\]
\[\text{Domain}\left( fof \right)=\left\{ x: x \ in R - \left\{ 1 \right\}\text{and}\frac{1}{1 - x} \in R - \left\{ 1 \right\} \right\}\]
\[ \text{Domain}\left( fof \right)=\left\{ x: x \neq 1 \text{and}\frac{1}{1 - x} \neq 1 \right\}\]
\[\text{Domain}\left( fof \right)=\left\{ x: x \neq 1 \text{and}1 - x \neq 1 \right\}\]
\[\text{Domain}\left( fof \right)=\left\{ x: x \neq 1 \text{and}x \neq 0 \right\}\]
\[\text{Domain}\left( fof \right)=R - \left\{ 0, 1 \right\}\]
\[\left( \text{f of} \right)\left( x \right) = f\left( f\left( x \right) \right) = f\left( \frac{1}{1 - x} \right) = \frac{1}{1 - \frac{1}{1 - x}} = \frac{1 - x}{1 - x - 1} = \frac{1 - x}{- x} = \frac{x - 1}{x}\]
\[\text{For range of f of}, x \neq 0\]
\[\text{Now,f of} : R - \left\{ 0, 1 \right\} \to R - \left\{ 0 \right\} \text{and}f: R - \left\{ 1 \right\} \to R - \left\{ 0 \right\}\]
\[\text{Range of f of is not a subset of domain of f}.\]
\[\text{Domain}\left( f o\left( fof \right) \right)=\left\{ x: x \text{in domain of f of and}\left( fof \right)\left( x \right) \text{in domain of f} \right\}\]
\[\text{Domain}\left( f o\left( \text{f of} \right) \right)=\left\{ x: x \in R - \left\{ 0, 1 \right\}\text{and}\frac{x - 1}{x} \in R - \left\{ 1 \right\} \right\}\]
\[ \text{Domain}\left( f o\left( fof \right) \right)=\left\{ x: x \neq 0, 1 \text{ and }\frac{x - 1}{x} \neq 1 \right\}\]
\[\text{Domain}\left( f o\left( fof \right) \right)=\left\{ x: x \neq 0, 1 \text{ and }x-1 \neq x \right\}\]
\[\text{Domain}\left( f o\left( fof \right) \right)=\left\{ x: x \neq 0, 1 \text{ and }x \in R \right\}\]
\[\text{Domain}\left( f o\left( f of \right) \right)=R - \left\{ 0, 1 \right\}\]
\[\left( fo\left( fof \right) \right)\left( x \right) = f\left( \left( fof \right)\left( x \right) \right)\]
\[ = f\left( \frac{x - 1}{x} \right)\]
\[ = \frac{1}{1 - \frac{x - 1}{x}}\]
\[ = \frac{x}{x - x + 1}\]
\[ = x\]
\[\text{So},\left( fo\left( fof \right) \right)\left( x \right) = x, \text{where}x \neq 0, 1\]
So, the answer is (c).
APPEARS IN
RELATED QUESTIONS
Let A = {−1, 0, 1, 2}, B = {−4, −2, 0, 2} and f, g: A → B be functions defined by f(x) = x2 − x, x ∈ A and g(x) = `2|x - 1/2|- 1, x in A`. Are f and g equal?
Justify your answer. (Hint: One may note that two functions f: A → B and g: A → B such that f(a) = g(a) ∀ a ∈ A are called equal functions).
Let A = {1, 2, 3}. Write all one-one from A to itself.
Find gof and fog when f : R → R and g : R → R is defined by f(x) = 8x3 and g(x) = x1/3.
If f(x) = sin x and g(x) = 2x be two real functions, then describe gof and fog. Are these equal functions?
Let f be any real function and let g be a function given by g(x) = 2x. Prove that gof = f + f.
State with reason whether the following functions have inverse :
g : {5, 6, 7, 8} → {1, 2, 3, 4} with g = {(5, 4), (6, 3), (7, 4), (8, 2)}
State with reason whether the following functions have inverse:
h : {2, 3, 4, 5} → {7, 9, 11, 13} with h = {(2, 7), (3, 9), (4, 11), (5, 13)}
Consider the function f : R+ → [-9 , ∞ ]given by f(x) = 5x2 + 6x - 9. Prove that f is invertible with f -1 (y) = `(sqrt(54 + 5y) -3)/5` [CBSE 2015]
If A = {1, 2, 3} and B = {a, b}, write the total number of functions from A to B.
If f : C → C is defined by f(x) = x4, write f−1 (1).
Let \[f : \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \to R\] be a function defined by f(x) = cos [x]. Write range (f).
Let f : R − {−1} → R − {1} be given by\[f\left( x \right) = \frac{x}{x + 1} . \text{Write } f^{- 1} \left( x \right)\]
If f : R → R is defined by f(x) = 3x + 2, find f (f (x)).
If f(x) = 4 −( x - 7)3 then write f-1 (x).
The range of the function
\[f\left( x \right) =^{7 - x} P_{x - 3}\]
Which function is used to check whether a character is alphanumeric or not?
Using the definition, prove that the function f: A→ B is invertible if and only if f is both one-one and onto
Which of the following functions from Z into Z are bijections?
Let f: `[2, oo)` → R be the function defined by f(x) = x2 – 4x + 5, then the range of f is ______.
The domain of the function `"f"("x") = 1/(sqrt ({"sin x"} + {"sin" ( pi + "x")}))` where {.} denotes fractional part, is
Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. Based on the given information, f is best defined as:
Given a function If as f(x) = 5x + 4, x ∈ R. If g : R → R is inverse of function ‘f then
Students of Grade 9, planned to plant saplings along straight lines, parallel to each other to one side of the playground ensuring that they had enough play area. Let us assume that they planted one of the rows of the saplings along the line y = x − 4. Let L be the set of all lines which are parallel on the ground and R be a relation on L.
Answer the following using the above information.
- The function f: R → R defined by f(x) = x − 4 is ____________.
Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.
Answer the following questions using the above information.
- Let f: R → R be defined by f(x) = x2 is:
Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.
Answer the following questions using the above information.
- Let f: N → N be defined by f(x) = x2 is ____________.
Let f: R → R defined by f(x) = 3x. Choose the correct answer
A function f: x → y is/are called onto (or surjective) if x under f.
The domain of the function `cos^-1((2sin^-1(1/(4x^2-1)))/π)` is ______.
Let f: R→R be a continuous function such that f(x) + f(x + 1) = 2, for all x ∈ R. If I1 = `int_0^8f(x)dx` and I2 = `int_(-1)^3f(x)dx`, then the value of I1 + 2I2 is equal to ______.
If log102 = 0.3010.log103 = 0.4771 then the number of ciphers after decimal before a significant figure comes in `(5/3)^-100` is ______.
Let a and b are two positive integers such that b ≠ 1. Let g(a, b) = Number of lattice points inside the quadrilateral formed by lines x = 0, y = 0, x = b and y = a. f(a, b) = `[a/b] + [(2a)/b] + ... + [((b - 1)a)/b]`, then the value of `[(g(101, 37))/(f(101, 37))]` is ______.
(Note P(x, y) is lattice point if x, y ∈ I)
(where [.] denotes greatest integer function)
Let f(x) be a polynomial of degree 3 such that f(k) = `-2/k` for k = 2, 3, 4, 5. Then the value of 52 – 10f(10) is equal to ______.
ASSERTION (A): The relation f : {1, 2, 3, 4} `rightarrow` {x, y, z, p} defined by f = {(1, x), (2, y), (3, z)} is a bijective function.
REASON (R): The function f : {1, 2, 3} `rightarrow` {x, y, z, p} such that f = {(1, x), (2, y), (3, z)} is one-one.
Let A = R – {2} and B = R – {1}. If f: A `→` B is a function defined by f(x) = `(x - 1)/(x - 2)` then show that f is a one-one and an onto function.
The given function f : R → R is not ‘onto’ function. Give reason.