English

Let \[A = \Left\{ X \In R : X \Leq 1 \Right\} and F : a \To A\] Be Defined as \[F\Left( X \Right) = X \Left( 2 - X \Right)\] Then, \[F^{- 1} \Left( X \Right)\] Is (A) \[1 + \Sqrt{1 - Mathematics

Advertisements
Advertisements

Question

Let

\[A = \left\{ x \in R : x \leq 1 \right\} and f : A \to A\] be defined as

\[f\left( x \right) = x \left( 2 - x \right)\] Then,

\[f^{- 1} \left( x \right)\] is

Options

  • \[1 + \sqrt{1 - x}\]

  • \[1 - \sqrt{1 - x}\]

  • \[\sqrt{1 - x}\]

  • \[1 \pm \sqrt{1 - x}\]

MCQ

Solution

LaTeX

\[\text{Let y be the element in the codomain R such that}\] 
\[ f^{- 1} \left( x \right) = y . . . \left( 1 \right)\] 
\[ \Rightarrow f\left( y \right) = x and y \leq1 \] 
\[ \Rightarrow y\left( 2 - y \right) = x\] 
\[ \Rightarrow 2y - y^2 = x\] 
\[ \Rightarrow y^2 - 2y + x = 0\] 
\[ \Rightarrow y^2 - 2y = - x\] 
\[ \Rightarrow y^2 - 2y + 1 = 1 - x\] 
\[ \Rightarrow \left( y - 1 \right)^2 = 1 - x\] 
\[ \Rightarrow y - 1 = \pm \sqrt{1 - x}\] 
\[ \Rightarrow y = 1 \pm \sqrt{1 - x}\] 
\[ \Rightarrow y = 1 - \sqrt{1 - x} \left ( \because y \leq1 \right)\] 
The correct answer is (b).

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Functions - Exercise 2.6 [Page 78]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 2 Functions
Exercise 2.6 | Q 35 | Page 78

RELATED QUESTIONS

Check the injectivity and surjectivity of the following function:

f: Z → Z given by f(x) = x2


Find the number of all onto functions from the set {1, 2, 3, …, n} to itself.


Show that the function f: ℝ → ℝ defined by f(x) = `x/(x^2 + 1), ∀x in R`is neither one-one nor onto. Also, if g: ℝ → ℝ is defined as g(x) = 2x - 1. Find fog(x)


Classify the following function as injection, surjection or bijection : f : N → N given by f(x) = x2


Classify the following function as injection, surjection or bijection :  f : Z → Z given by f(x) = x3


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = 3 − 4x


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = `x/(x^2 +1)`


If f : A → B is an injection, such that range of f = {a}, determine the number of elements in A.


Set of ordered pair of  a function? If so, examine whether the mapping is injective or surjective :{(xy) : x is a person, y is the mother of x}


Suppose f1 and f2 are non-zero one-one functions from R to R. Is `f_1 / f^2` necessarily one - one? Justify your answer. Here,`f_1/f_2 : R → R   is   given   by   (f_1/f_2) (x) = (f_1(x))/(f_2 (x))  for all  x in R .`


Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of each of the following:
(i) an injective map from A to B
(ii) a mapping from A to B which is not injective
(iii) a mapping from A to B.


Let f = {(1, −1), (4, −2), (9, −3), (16, 4)} and g = {(−1, −2), (−2, −4), (−3, −6), (4, 8)}. Show that gof is defined while fog is not defined. Also, find gof.


Find  fog (2) and gof (1) when : f : R → R ; f(x) = x2 + 8 and g : R → Rg(x) = 3x3 + 1.


Find fog and gof  if : f(x)= x + 1, g (x) = 2x + 3 .


Consider the function f : R→  [-9 , ∞ ]given by f(x) = 5x2 + 6x - 9. Prove that f is invertible with -1 (y) = `(sqrt(54 + 5y) -3)/5`             [CBSE 2015]


Let A and B be two sets, each with a finite number of elements. Assume that there is an injective map from A to B and that there is an injective map from B to A. Prove that there is a bijection from A to B.


If A = {1, 2, 3} and B = {ab}, write the total number of functions from A to B.


If f : C → C is defined by f(x) = x2, write f−1 (−4). Here, C denotes the set of all complex numbers.


Let f : R → R be defined as  `f (x) = (2x - 3)/4.` write fo f-1 (1) .


Write whether f : R → R, given by `f(x) = x + sqrtx^2` is one-one, many-one, onto or into.


If f(x) = x + 7 and g(x) = x − 7, x ∈ R, write fog (7).


If a function g = {(1, 1), (2, 3), (3, 5), (4, 7)} is described by g(x) = \[\alpha x + \beta\]  then find the values of \[\alpha\] and \[ \beta\] . [NCERT EXEMPLAR]


If the function

\[f : R \to R\]  be such that

\[f\left( x \right) = x - \left[ x \right]\] where [x] denotes the greatest integer less than or equal to x, then \[f^{- 1} \left( x \right)\]

 


Mark the correct alternative in the following question:
If the set A contains 7 elements and the set B contains 10 elements, then the number one-one functions from A to B is


Write about strlen() function.


Let the function f: R → R be defined by f(x) = cosx, ∀ x ∈ R. Show that f is neither one-one nor onto


Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not

h = {(1,4), (2, 5), (3, 5)}


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

h(x) = x|x|


Let f: R → R be defined by f(x) = `1/x` ∀ x ∈ R. Then f is ______.


Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.

Answer the following questions using the above information.

  • Let : N → R be defined by f(x) = x2. Range of the function among the following is ____________.

Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.

Answer the following questions using the above information.

  • The function f: Z → Z defined by f(x) = x2 is ____________.

Consider a function f: `[0, pi/2] ->` R, given by f(x) = sinx and `g[0, pi/2] ->` R given by g(x) = cosx then f and g are


Let f: R→R be a continuous function such that f(x) + f(x + 1) = 2, for all x ∈ R. If I1 = `int_0^8f(x)dx` and I2 = `int_(-1)^3f(x)dx`, then the value of I1 + 2I2 is equal to ______.


Consider a set containing function A= {cos–1cosx, sin(sin–1x), sinx((sinx)2 – 1), etan{x}, `e^(|cosx| + |sinx|)`, sin(tan(cosx)), sin(tanx)}. B, C, D, are subsets of A, such that B contains periodic functions, C contains even functions, D contains odd functions then the value of n(B ∩ C) + n(B ∩ D) is ______ where {.} denotes the fractional part of functions)


Let S = {1, 2, 3, 4, 5, 6, 7}. Then the number of possible functions f: S `rightarrow` S such that f(m.n) = f(m).f(n) for every m, n ∈ S and m.n ∈ S is equal to ______.


Write the domain and range (principle value branch) of the following functions:

f(x) = tan–1 x.


The trigonometric equation tan–1x = 3tan–1 a has solution for ______.



The given function f : R → R is not ‘onto’ function. Give reason.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×