English

If F : a → B is an Injection, Such that Range of F = {A}, Determine the Number of Elements in A. - Mathematics

Advertisements
Advertisements

Question

If f : A → B is an injection, such that range of f = {a}, determine the number of elements in A.

Sum

Solution

Range of f = {a}
So, the number of images of  = 1
Since, f  is an injection, there will be exactly one image for each element of f .
So, number of elements in A = 1.

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Functions - Exercise 2.1 [Page 31]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 2 Functions
Exercise 2.1 | Q 6 | Page 31

RELATED QUESTIONS

Show that the modulus function f: → R given by f(x) = |x| is neither one-one nor onto, where |x| is x, if x is positive or 0 and |x|  is − x if x is negative.


Find the number of all onto functions from the set {1, 2, 3, …, n} to itself.


Let fR → R be the Signum Function defined as

f(x) = `{(1,x>0), (0, x =0),(-1, x< 0):}`

and gR → be the Greatest Integer Function given by g(x) = [x], where [x] is greatest integer less than or equal to x. Then does fog and gof coincide in (0, 1]?


Classify the following function as injection, surjection or bijection :
f : R → R, defined by f(x) = 5x3 + 4


Show that the logarithmic function  f : R0+ → R   given  by f (x)  loga x ,a> 0   is   a  bijection.


Let f = {(1, −1), (4, −2), (9, −3), (16, 4)} and g = {(−1, −2), (−2, −4), (−3, −6), (4, 8)}. Show that gof is defined while fog is not defined. Also, find gof.


Find fog and gof  if : f(x) = sin−1 x, g(x) = x2


If f(x) = sin x and g(x) = 2x be two real functions, then describe gof and fog. Are these equal functions?


if f (x) = `sqrt (x +3) and  g (x) = x ^2 + 1` be two real functions, then find fog and gof.


Consider f : {1, 2, 3} → {abc} and g : {abc} → {apple, ball, cat} defined as f (1) = af (2) = bf (3) = cg (a) = apple, g (b) = ball and g (c) =  cat. Show that fg and gof are invertible. Find f−1g−1 and gof−1and show that (gof)−1 = f 1o g−1


If f : C → C is defined by f(x) = x2, write f−1 (−4). Here, C denotes the set of all complex numbers.


Let A = {x ∈ R : −4 ≤ x ≤ 4 and x ≠ 0} and f : A → R be defined by \[f\left( x \right) = \frac{\left| x \right|}{x}\]Write the range of f.


Let f : R → Rg : R → R be two functions defined by f(x) = x2 + x + 1 and g(x) = 1 − x2. Write fog (−2).


Write the domain of the real function

`f (x) = sqrt([x] - x) .`


Write whether f : R → R, given by `f(x) = x + sqrtx^2` is one-one, many-one, onto or into.


If f : R → R be defined by f(x) = (3 − x3)1/3, then find fof (x).


Let f be an injective map with domain {xyz} and range {1, 2, 3}, such that exactly one of the following statements is correct and the remaining are false.

\[f\left( x \right) = 1, f\left( y \right) \neq 1, f\left( z \right) \neq 2 .\]

The value of

\[f^{- 1} \left( 1 \right)\] is 

 


Let

\[f : R \to R\]  be a function defined by

\[f\left( x \right) = \frac{e^{|x|} - e^{- x}}{e^x + e^{- x}} . \text{Then},\]
 

\[f : R \to R\] is defined by

\[f\left( x \right) = \frac{e^{x^2} - e^{- x^2}}{e^{x^2 + e^{- x^2}}} is\]

 


If  \[f\left( x \right) = \sin^2 x\] and the composite function   \[g\left( f\left( x \right) \right) = \left| \sin x \right|\] then g(x) is equal to


Let 
\[f : R \to R\]  be given by \[f\left( x \right) = x^2 - 3\] Then, \[f^{- 1}\] is given by 

 


Mark the correct alternative in the following question:
Let f :  \[-\] \[\left\{ \frac{3}{5} \right\}\] \[\to\]  R be defined by f(x) = \[\frac{3x + 2}{5x - 3}\] Then,

 


Let R be the set of real numbers and f: R → R be the function defined by f(x) = 4x + 5. Show that f is invertible and find f–1.


Let f: R → R be defined by f(x) = x2 + 1. Then, pre-images of 17 and – 3, respectively, are ______.


Let D be the domain of the real valued function f defined by f(x) = `sqrt(25 - x^2)`. Then, write D


Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not

h = {(1,4), (2, 5), (3, 5)}


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

f(x) = `x/2`


Let A = {1, 2, 3, ...n} and B = {a, b}. Then the number of surjections from A into B is ______.


If f(x) = (4 – (x – 7)3}, then f–1(x) = ______.


The smallest integer function f(x) = [x] is ____________.


The function f : R → R defined by f(x) = 3 – 4x is ____________.


The number of bijective functions from set A to itself when A contains 106 elements is ____________.


The mapping f : N → N is given by f(n) = 1 + n2, n ∈ N when N is the set of natural numbers is ____________.


The function f: R → R defined as f(x) = x3 is:


Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.

Answer the following questions using the above information.

  • Let f: {1,2,3,....} → {1,4,9,....} be defined by f(x) = x2 is ____________.

`x^(log_5x) > 5` implies ______.


Let a and b are two positive integers such that b ≠ 1. Let g(a, b) = Number of lattice points inside the quadrilateral formed by lines x = 0, y = 0, x = b and y = a. f(a, b) = `[a/b] + [(2a)/b] + ... + [((b - 1)a)/b]`, then the value of `[(g(101, 37))/(f(101, 37))]` is ______.

(Note P(x, y) is lattice point if x, y ∈ I)

(where [.] denotes greatest integer function)


Let A = R – {2} and B = R – {1}. If f: A `→` B is a function defined by f(x) = `(x - 1)/(x - 2)` then show that f is a one-one and an onto function.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×