English

Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective: f(x) = x2 - Mathematics

Advertisements
Advertisements

Question

Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

f(x) = `x/2`

Sum

Solution

Given, A = [–1, 1]

f: [–1, 1] → [–1, 1], f(x) = `x/2`

Let f(x1) = f(x2)

`x_1/2` = x2

So, f(x) is one-one.

Also x ∈ [–1, 1]

`x/2` = f(x) = `[-1/2, 1/2]`

Hence, the range is a subset of co-domain ‘A’

So, f(x) is not onto.

Therefore, f(x) is not bijective.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Relations And Functions - Exercise [Page 12]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 1 Relations And Functions
Exercise | Q 21. (i) | Page 12

RELATED QUESTIONS

Let fR → be defined as f(x) = 10x + 7. Find the function gR → R such that g o f = f o = 1R.


Classify the following function as injection, surjection or bijection : f : N → N given by f(x) = x2


Let A = [-1, 1]. Then, discuss whether the following function from A to itself is one-one, onto or bijective : `f (x) = x/2`


Let A = {abc}, B = {u vw} and let f and g be two functions from A to B and from B to A, respectively, defined as :
f = {(av), (bu), (cw)}, g = {(ub), (va), (wc)}.
Show that f and g both are bijections and find fog and gof.


Give examples of two functions f : N → Z and g : Z → Z, such that gof is injective but gis not injective.


Find fog and gof  if : f(x) = c, c ∈ R, g(x) = sin `x^2`


Let f(x) = x2 + x + 1 and g(x) = sin x. Show that fog ≠ gof.


Find f −1 if it exists : f : A → B, where A = {1, 3, 5, 7, 9}; B = {0, 1, 9, 25, 49, 81} and f(x) = x2


Consider f : R → R given by f(x) = 4x + 3. Show that f is invertible. Find the inverse of f.


If f : R → (−1, 1) defined by `f (x) = (10^x- 10^-x)/(10^x + 10 ^-x)` is invertible, find f−1.


If f : R → (0, 2) defined by `f (x) =(e^x - e^(x))/(e^x +e^(-x))+1`is invertible , find f-1.


If f : A → Ag : A → A are two bijections, then prove that fog is a surjection ?


Which of the following graphs represents a one-one function?


Let f : R → R+ be defined by f(x) = axa > 0 and a ≠ 1. Write f−1 (x).


Write the domain of the real function f defined by f(x) = `sqrt (25 -x^2)`   [NCERT EXEMPLAR]


Let A = {abcd} and f : A → A be given by f = {( a,b ),( b , d ),( c , a ) , ( d , c )} write `f^-1`. [NCERT EXEMPLAR]


Let the function

\[f : R - \left\{ - b \right\} \to R - \left\{ 1 \right\}\]

\[f\left( x \right) = \frac{x + a}{x + b}, a \neq b .\text{Then},\]

 


Mark the correct alternative in the following question:

Let f : → R be given by f(x) = tanx. Then, f-1(1) is

 

 


If f: R → R is defined by f(x) = x2 – 3x + 2, write f(f (x))


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

h(x) = x|x|


Using the definition, prove that the function f: A→ B is invertible if and only if f is both one-one and onto


Let A = {1, 2, 3, ...n} and B = {a, b}. Then the number of surjections from A into B is ______.


Let f: R → R be the functions defined by f(x) = x3 + 5. Then f–1(x) is ______.


Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.

Answer the following questions using the above information.

  • Let : N → R be defined by f(x) = x2. Range of the function among the following is ____________.

Function f: R → R, defined by f(x) = `x/(x^2 + 1)` ∀ x ∈ R is not


If f; R → R f(x) = 10x + 3 then f–1(x) is:


If f: R→R is a function defined by f(x) = `[x - 1]cos((2x - 1)/2)π`, where [ ] denotes the greatest integer function, then f is ______.


Number of integral values of x satisfying the inequality `(3/4)^(6x + 10 - x^2) < 27/64` is ______.


Let x is a real number such that are functions involved are well defined then the value of `lim_(t→0)[max{(sin^-1  x/3 + cos^-1  x/3)^2, min(x^2 + 4x + 7)}]((sin^-1t)/t)` where [.] is greatest integer function and all other brackets are usual brackets.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×