English

Mark the Correct Alternative in the Following Question: Let F : R → R Be Given by F(X) = Tanx. Then, F1(1) is (A) π 4 (B) { N π + π 4 : N ∈ Z } (C) Does Not Exist (D) None of These - Mathematics

Advertisements
Advertisements

Question

Mark the correct alternative in the following question:

Let f : → R be given by f(x) = tanx. Then, f-1(1) is

 

 

Options

  •  π4   

  • {nπ+π4:nZ}

  • does not exist    

  • none of these

MCQ

Solution

We have, 

f : R → R is given by 

f (x) = tan x 

⇒ f-1 (x) = tan-1 x

∴ f-1 (1) = tan-1 1 = {nπ + π /4 : n ∈ Z}

Hence, the correct alternative is option (b).

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Functions - Exercise 2.6 [Page 79]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 2 Functions
Exercise 2.6 | Q 50 | Page 79

RELATED QUESTIONS

Let fR → be defined as f(x) = 10x + 7. Find the function gR → R such that g o f = f o = 1R.


Show that the function f: ℝ → ℝ defined by f(x) = xx2+1, xRis neither one-one nor onto. Also, if g: ℝ → ℝ is defined as g(x) = 2x - 1. Find fog(x)


Give an example of a function which is one-one but not onto ?


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = 1 + x2


Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of each of the following:
(i) an injective map from A to B
(ii) a mapping from A to B which is not injective
(iii) a mapping from A to B.


Show that f : R→ R, given by f(x) = x — [x], is neither one-one nor onto.


Find gof and fog when f : R → R and g : R → R is defined by f(x) = 2x + 3 and  g(x) = x2 + 5 .


Find gof and fog when f : R → R and g : R → R is defined by  f(x) = 2x + x2 and  g(x) = x3


Let fgh be real functions given by f(x) = sin xg (x) = 2x and h (x) = cos x. Prove that fog = go (fh).


If f : Q → Qg : Q → Q are two functions defined by f(x) = 2 x and g(x) = x + 2, show that f and g are bijective maps. Verify that (gof)−1 = f−1 og −1.


If A = {1, 2, 3} and B = {ab}, write the total number of functions from A to B.


Write the total number of one-one functions from set A = {1, 2, 3, 4} to set B = {abc}.


Let f be an invertible real function. Write ( f-1  of ) (1) + ( f-1  of ) (2) +..... +( f-1 of ) (100 )


Write the domain of the real function

f(x)=1[x]-x.


Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. State whether f is one-one or not.


If f(x) = 4 −( x - 7)3 then write f-1 (x).


Let M be the set of all 2 × 2 matrices with entries from the set R of real numbers. Then, the function f : M→ R defined by f(A) = |A| for every A ∈ M, is

 


A function f  from the set of natural numbers to integers defined by

{n-12 when  n is  odd  is-n2when n is even

 

 


Let

A={x:1x1}andf:AA such that f(x)=x|x|

 


f:RR is defined by

f(x)=ex2ex2ex2+ex2is

 


If  F:[1,)[2,) is given by

f(x)=x+1x,thenf1(x)

 


If  f(x)=sin2x and the composite function   g(f(x))=|sinx| then g(x) is equal to


Let the function f: R → R be defined by f(x) = 4x – 1, ∀ x ∈ R. Then, show that f is one-one.


Let f: R → R be defined by f(x) = x2 + 1. Then, pre-images of 17 and – 3, respectively, are ______.


For sets A, B and C, let f: A → B, g: B → C be functions such that g o f is injective. Then both f and g are injective functions.


Let f: R → R be the function defined by f(x) = 2x – 3 ∀ x ∈ R. write f–1 


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

k(x) = x2 


Using the definition, prove that the function f: A→ B is invertible if and only if f is both one-one and onto


Let f : R → R be defind by f(x) = 1x  xR. Then f is ____________.


Let f : R R be a function defined by f(x) = x3 + 4, then f is ______.


Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. Based on the given information, f is best defined as:


If f; R → R f(x) = 10x + 3 then f–1(x) is:


Let f: R→R be a continuous function such that f(x) + f(x + 1) = 2, for all x ∈ R. If I1 = 08f(x)dx and I2 = -13f(x)dx, then the value of I1 + 2I2 is equal to ______.


The solution set of the inequation log1/3(x2 + x + 1) + 1 > 0 is ______.


Number of integral values of x satisfying the inequality (34)6x+10-x2<2764 is ______.


Difference between the greatest and least value of f(x) = (1+cos-1xπ)2-(1+sin-1xπ)2 is ______.


Let f(1, 3) R be a function defined by f(x) = x[x]1+x2, where [x] denotes the greatest integer ≤ x, Then the range of f is ______.


Let A = {1, 2, 3, ..., 10} and f : A A be defined as

f(k) = {k+1ifk is odd   kifk is even.

Then the number of possible functions g : A A such that gof = f is ______.


A function f : [– 4, 4] [0, 4] is given by f(x) = 16-x2. Show that f is an onto function but not a one-one function. Further, find all possible values of 'a' for which f(a) = 7.


Let A = R – {2} and B = R – {1}. If f: A B is a function defined by f(x) = x-1x-2 then show that f is a one-one and an onto function.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.