English

Let the function f: R → R be defined by f(x) = 4x – 1, ∀ x ∈ R. Then, show that f is one-one. - Mathematics

Advertisements
Advertisements

Question

Let the function f: R → R be defined by f(x) = 4x – 1, ∀ x ∈ R. Then, show that f is one-one.

Sum

Solution

For any two elements x1 , x2 ∈ R such that f(x1) = f(x2),

We have 4x1 – 1 = 4x2 – 1

⇒ 4x1 = 4x2 

i.e., x1 = x2

Hence f is one-one.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Relations And Functions - Solved Examples [Page 3]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 1 Relations And Functions
Solved Examples | Q 4 | Page 3

RELATED QUESTIONS

Following the case, state whether the function is one-one, onto, or bijective. Justify your answer.

f : → R defined by f(x) = 3 − 4x


If A = {1, 2, 3}, show that a one-one function f : A → A must be onto.


If A = {1, 2, 3}, show that a onto function f : A → A must be one-one.


Show that if f1 and f2 are one-one maps from R to R, then the product f1 × f2 : R → R defined by (f1 × f2) (x) = f1 (x) f2 (x) need not be one - one.


Let R+ be the set of all non-negative real numbers. If f : R+ → R+ and g : R+ → R+ are defined as `f(x)=x^2` and `g(x)=+sqrtx` , find fog and gof. Are they equal functions ?


   if `f (x) = sqrt(1-x)` and g(x) = `log_e` x are two real functions, then describe functions fog and gof.


Find f −1 if it exists : f : A → B, where A = {0, −1, −3, 2}; B = {−9, −3, 0, 6} and f(x) = 3 x.


Consider f : R → R given by f(x) = 4x + 3. Show that f is invertible. Find the inverse of f.


A function f : R → R is defined as f(x) = x3 + 4. Is it a bijection or not? In case it is a bijection, find f−1 (3).


Let A = R - {3} and B = R - {1}. Consider the function f : A → B defined by f(x) = `(x-2)/(x-3).`Show that f is one-one and onto and hence find f-1.

                    [CBSE 2012, 2014]


If f : A → Ag : A → A are two bijections, then prove that fog is an injection ?


If f : A → Ag : A → A are two bijections, then prove that fog is a surjection ?


Write the domain of the real function f defined by f(x) = `sqrt (25 -x^2)`   [NCERT EXEMPLAR]


The function f : R → R defined by

`f (x) = 2^x + 2^(|x|)` is 

 


Let

\[A = \left\{ x : - 1 \leq x \leq 1 \right\} \text{and} f : A \to \text{A such that f}\left( x \right) = x|x|\]

 


The function

\[f : R \to R\] defined by\[f\left( x \right) = \left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)\]

(a) one-one but not onto
(b) onto but not one-one
(c) both one and onto
(d) neither one-one nor onto


Let  \[f\left( x \right) = \frac{\alpha x}{x + 1}, x \neq - 1\] Then, for what value of α is \[f \left( f\left( x \right) \right) = x?\]

 


Let \[f\left(x\right) = x^3\] be a function with domain {0, 1, 2, 3}. Then domain of \[f^{-1}\] is ______.


Mark the correct alternative in the following question:
Let f : R→ R be defined as, f(x) =  \[\begin{cases}2x, if x > 3 \\ x^2 , if 1 < x \leq 3 \\ 3x, if x \leq 1\end{cases}\] 

Then, find f( \[-\]1) + f(2) + f(4)

 


Mark the correct alternative in the following question:
If the set A contains 7 elements and the set B contains 10 elements, then the number one-one functions from A to B is


A function f: R→ R defined by f(x) = `(3x) /5 + 2`, x ∈ R. Show that f is one-one and onto. Hence find f−1.


If f(x) = `(x+3)/(4x−5) , "g"(x) = (3+5x)/(4x−1)` then verify that `("fog") (x)` = x.


Are the following set of ordered pairs functions? If so, examine whether the mapping is injective or surjective.
{(a, b): a is a person, b is an ancestor of a}


Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not

g = {(1, 4), (2, 4), (3, 4)}


Using the definition, prove that the function f: A→ B is invertible if and only if f is both one-one and onto


Which of the following functions from Z into Z are bijections?


Let f: R → R be given by f(x) = tan x. Then f–1(1) is ______.


Let A = R – {3}, B = R – {1}. Let f : A → B be defined by `"f"("x") = ("x" - 2)/("x" - 3)` Then, ____________.


The function f: R → R defined as f(x) = x3 is:


`x^(log_5x) > 5` implies ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×