English

A function f: R→ R defined by f(x) = 3x5+2, x ∈ R. Show that f is one-one and onto. Hence find f−1. - Mathematics and Statistics

Advertisements
Advertisements

Question

A function f: R→ R defined by f(x) = `(3x) /5 + 2`, x ∈ R. Show that f is one-one and onto. Hence find f−1.

Sum

Solution

f: R → R defined by f(x) = `(3x)/5 + 2`

First we have to prove that f is one-one function for that we have to prove if f(x1) = f(x2) then x1 = x2

Here f(x) = `(3x)/5 + 2`

Let f(x1) = f(x2)

∴ `(3x_1)/5 + 2 = (3x_2)/5 + 2`

∴ `(3x_1)/5 = (3x_2)/5`

∴ x1 = x2
∴ f is a one-one function.
Now, we have to prove that f is an onto function. Let y ∈ R be such that
y = f(x)

∴ y = `(3x)/5 + 2`

∴ y – 2 =`(3x)/5`

∴ `x = (5(y-2))/3 ∈ R`

∴ for any y ∈ co-domain R, there exist an element x = `(5(y-2))/3` ∈ domain R such that f(x) = y

∴ f is an onto function.
∴ f is one-one onto function.
∴ f-1 exists

∴ f-1(y) = `(5(y-2))/3`

∴ f -1(x) = `(5(x-2))/3`

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Functions - Miscellaneous Exercise 2 [Page 32]

APPEARS IN

RELATED QUESTIONS

Show that function f: R `rightarrow` {x ∈ R : −1 < x < 1} defined by f(x) = `x/(1 + |x|)`, x ∈ R is one-one and onto function.


Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of each of the following:
(i) an injective map from A to B
(ii) a mapping from A to B which is not injective
(iii) a mapping from A to B.


Find gof and fog when f : R → R and g : R → R is defined by  f(x) = x2 + 8 and g(x) = 3x3 + 1 .


Find fog and gof  if : f (x) = x+1, g(x) = `e^x`

.


If f : R → (−1, 1) defined by `f (x) = (10^x- 10^-x)/(10^x + 10 ^-x)` is invertible, find f−1.


Let f : [−1, ∞) → [−1, ∞) be given by f(x) = (x + 1)2 − 1, x ≥ −1. Show that f is invertible. Also, find the set S = {x : f(x) = f−1 (x)}.


If A = {1, 2, 3} and B = {ab}, write the total number of functions from A to B.


If f : C → C is defined by f(x) = x2, write f−1 (−4). Here, C denotes the set of all complex numbers.


If f : R → Rg : R → are given by f(x) = (x + 1)2 and g(x) = x2 + 1, then write the value of fog (−3).


\[f : R \to R \text{given by} f\left( x \right) = x + \sqrt{x^2} \text{ is }\]

 

 


If a function\[f : [2, \infty )\text{ to B defined by f}\left( x \right) = x^2 - 4x + 5\] is a bijection, then B =


Let

\[f : R \to R\]
\[f\left( x \right) = \frac{x^2 - 8}{x^2 + 2}\]
Then,  f is


A function f from the set of natural numbers to the set of integers defined by

\[f\left( n \right)\begin{cases}\frac{n - 1}{2}, & \text{when n is odd} \\ - \frac{n}{2}, & \text{when n is even}\end{cases}\]

 


The distinct linear functions that map [−1, 1] onto [0, 2] are


Let A = R − (2) and B = R − (1). If f: A ⟶ B is a function defined by`"f(x)"=("x"-1)/("x"-2),` how that f is one-one and onto. Hence, find f−1


Let f: R → R be given by f(x) = tan x. Then f–1(1) is ______.


Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.

Answer the following questions using the above information.

  • Let f: R → R be defined by f(x) = x2 is:

Let n(A) = 4 and n(B) = 6, Then the number of one – one functions from 'A' to 'B' is:


Let [x] denote the greatest integer ≤ x, where x ∈ R. If the domain of the real valued function f(x) = `sqrt((|[x]| - 2)/(|[x]| - 3)` is (–∞, a) ∪ [b, c) ∪ [4, ∞), a < b < c, then the value of a + b + c is ______.


The solution set of the inequation log1/3(x2 + x + 1) + 1 > 0 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×