Advertisements
Advertisements
Question
Let f : [−1, ∞) → [−1, ∞) be given by f(x) = (x + 1)2 − 1, x ≥ −1. Show that f is invertible. Also, find the set S = {x : f(x) = f−1 (x)}.
Solution
Injectivity : Let x and y ∈ [−1, ∞), such that
f (x) = f (y)
⇒ (x + 1)2 − 1 = (y+1)2 −1
⇒ ( x + 1)2 = (y + 1)2
⇒ (x + 1) = (y + 1)
⇒ x = y
So, f is a injection .
Surjectivity : Let y ∈ [ −1, ∞ ).
Then, f (x) = y
⇒ (x+1)2 −1 = y
⇒ `x +1 = sqrt (y +1)`
⇒ `x = sqrt(y + 1) -1`
Clearly, `x = sqrt(y + 1) - 1` is real for all y ≥ -1 .
Thus, every element y ∈ [−1, ∞) has its pre − image x ∈ [−1, ∞) given by x= `sqrt(y+1) -1`.
⇒f is a surjection.
So, f is a bijection.
Hence, f is invertible.
Let f−1 (x) =y ...(1)
⇒f (y) = x
⇒ ( y + 1)2 −1 = x
⇒ ( y + 1)2 = x + 1
⇒ `y+ 1 = sqrt(x +1)`
⇒ `y = ± sqrt (x - 1) - 1`
⇒ `f^-1 (x) = ± sqrt(x +1) - 1` [from (1)]
f (x) = f−1 (x)
⇒ `(x + 1) ^2 -1 = ± sqrt(x +1) -1`
⇒ `(x +1 ) ^2 = ±sqrt(x +1)`
⇒ `(x +1)^4 = x +1`
⇒ `(x+1) [(x+1)^3 - 1] = 0`
⇒ x + 1 = 0 or (x +1) 3− = 0
⇒ x = −1 or ( x +1)3 = 1
⇒ x = −1 or x + 1= 1
⇒ x = −1 or x = 0
⇒ S = { 0, −1 }
APPEARS IN
RELATED QUESTIONS
Check the injectivity and surjectivity of the following function:
f: N → N given by f(x) = x3
Show that the modulus function f: R → R given by f(x) = |x| is neither one-one nor onto, where |x| is x, if x is positive or 0 and |x| is − x if x is negative.
Show that function f: R `rightarrow` {x ∈ R : −1 < x < 1} defined by f(x) = `x/(1 + |x|)`, x ∈ R is one-one and onto function.
Classify the following function as injection, surjection or bijection : f : N → N given by f(x) = x3
Classify the following function as injection, surjection or bijection :
f : R → R, defined by f(x) = 3 − 4x
If f : A → B is an injection, such that range of f = {a}, determine the number of elements in A.
Let A = {1, 2, 3}. Write all one-one from A to itself.
Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of each of the following:
(i) an injective map from A to B
(ii) a mapping from A to B which is not injective
(iii) a mapping from A to B.
Find gof and fog when f : R → R and g : R → R is defined by f(x) = 2x + 3 and g(x) = x2 + 5 .
Find fog (2) and gof (1) when : f : R → R ; f(x) = x2 + 8 and g : R → R; g(x) = 3x3 + 1.
if `f (x) = sqrt(1-x)` and g(x) = `log_e` x are two real functions, then describe functions fog and gof.
Let A = {1, 2, 3, 4}; B = {3, 5, 7, 9}; C = {7, 23, 47, 79} and f : A → B, g : B → C be defined as f(x) = 2x + 1 and g(x) = x2 − 2. Express (gof)−1 and f−1 og−1 as the sets of ordered pairs and verify that (gof)−1 = f−1 og−1.
If f : Q → Q, g : Q → Q are two functions defined by f(x) = 2 x and g(x) = x + 2, show that f and g are bijective maps. Verify that (gof)−1 = f−1 og −1.
Consider the function f : R+ → [-9 , ∞ ]given by f(x) = 5x2 + 6x - 9. Prove that f is invertible with f -1 (y) = `(sqrt(54 + 5y) -3)/5` [CBSE 2015]
Let C denote the set of all complex numbers. A function f : C → C is defined by f(x) = x3. Write f−1(1).
Let f be a function from C (set of all complex numbers) to itself given by f(x) = x3. Write f−1 (−1).
If f : R → R is defined by f(x) = x2, find f−1 (−25).
Let\[A = \left\{ x \in R : - 1 \leq x \leq 1 \right\} = \text{B and C} = \left\{ x \in R : x \geq 0 \right\} and\]\[S = \left\{ \left( x, y \right) \in A \times B : x^2 + y^2 = 1 \right\} \text{and } S_0 = \left\{ \left( x, y \right) \in A \times C : x^2 + y^2 = 1 \right\}\]
Then,
If a function\[f : [2, \infty )\text{ to B defined by f}\left( x \right) = x^2 - 4x + 5\] is a bijection, then B =
Let \[f\left( x \right) = \frac{\alpha x}{x + 1}, x \neq - 1\] Then, for what value of α is \[f \left( f\left( x \right) \right) = x?\]
The distinct linear functions that map [−1, 1] onto [0, 2] are
Mark the correct alternative in the following question:
If the set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is
A function f: R→ R defined by f(x) = `(3x) /5 + 2`, x ∈ R. Show that f is one-one and onto. Hence find f−1.
Write about strcmp() function.
If A = {a, b, c, d} and f = {a, b), (b, d), (c, a), (d, c)}, show that f is one-one from A onto A. Find f–1
Let f: R → R be defined by f(x) = x2 + 1. Then, pre-images of 17 and – 3, respectively, are ______.
Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:
g(x) = |x|
If the set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is ______.
Let f: R – `{3/5}` → R be defined by f(x) = `(3x + 2)/(5x - 3)`. Then ______.
The domain of the function `"f"("x") = 1/(sqrt ({"sin x"} + {"sin" ( pi + "x")}))` where {.} denotes fractional part, is
An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.
Ravi decides to explore these sets for various types of relations and functions.
- Ravi wants to know among those relations, how many functions can be formed from B to G?
Let f: R → R defined by f(x) = 3x. Choose the correct answer
A function f: x → y is said to be one – one (or injective) if:
Function f: R → R, defined by f(x) = `x/(x^2 + 1)` ∀ x ∈ R is not
`x^(log_5x) > 5` implies ______.
Let x is a real number such that are functions involved are well defined then the value of `lim_(t→0)[max{(sin^-1 x/3 + cos^-1 x/3)^2, min(x^2 + 4x + 7)}]((sin^-1t)/t)` where [.] is greatest integer function and all other brackets are usual brackets.
The function f(x) = [x], where [x] denotes the greatest integer less than or equal to x; is continuous at ______.
Let f(x) be a polynomial function of degree 6 such that `d/dx (f(x))` = (x – 1)3 (x – 3)2, then
Assertion (A): f(x) has a minimum at x = 1.
Reason (R): When `d/dx (f(x)) < 0, ∀ x ∈ (a - h, a)` and `d/dx (f(x)) > 0, ∀ x ∈ (a, a + h)`; where 'h' is an infinitesimally small positive quantity, then f(x) has a minimum at x = a, provided f(x) is continuous at x = a.