English

Let F : [−1, ∞) → [−1, ∞) Be Given By F(X) = (X + 1)2 − 1, X ≥ −1. Show That F Is Invertible. Also, Find the Set S = {X : F(X) = F−1 (X)}. - Mathematics

Advertisements
Advertisements

Question

Let f : [−1, ∞) → [−1, ∞) be given by f(x) = (x + 1)2 − 1, x ≥ −1. Show that f is invertible. Also, find the set S = {x : f(x) = f−1 (x)}.

Solution

Injectivity : Let x and y ∈ [−1, ∞), such that 

f (x) = f (y)

⇒ (x + 1)2 − 1 = (y+1)2 −1

⇒ ( x + 1)2 = (y + 1)2

⇒ (x + 1) = (y + 1)

⇒ x = y

So, f is a injection .

Surjectivity : Let y ∈ [ −1, ∞ ).

Then, f (x) = y

⇒ (x+1)2 −1 = y

⇒ `x +1 = sqrt (y +1)`

⇒ `x = sqrt(y + 1) -1`

Clearly, `x = sqrt(y + 1) - 1` is real for all y ≥ -1 .

Thus, every element y ∈  [−1, ∞) has its pre − image x ∈ [−1, ∞) given by x= `sqrt(y+1) -1`.

⇒f is a surjection.

So, f is a bijection.

Hence, f is invertible.

Let f−1 (x) =y                          ...(1)

⇒f (y) = x

⇒ ( y + 1)2 −1 = x

⇒ ( y + 1)2 = x + 1

⇒ `y+ 1 = sqrt(x +1)`

⇒ `y = ± sqrt (x - 1) - 1`

⇒ `f^-1 (x) = ± sqrt(x +1)  - 1`    [from (1)]

f (x) = f−1 (x)

⇒ `(x + 1) ^2 -1 = ± sqrt(x +1) -1`

 ⇒ `(x +1 ) ^2 = ±sqrt(x +1)`

⇒ `(x +1)^4 = x +1` 

⇒ `(x+1) [(x+1)^3 - 1] = 0`

⇒ x + 1 = 0 or (x +1) 3− = 0

⇒ x = −1 or ( x +1)3 = 1

⇒ x = −1 or x + 1= 1

⇒ x = −1 or x = 0

⇒ S = { 0, −1 }

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Functions - Exercise 2.4 [Page 69]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 2 Functions
Exercise 2.4 | Q 19 | Page 69

RELATED QUESTIONS

Check the injectivity and surjectivity of the following function:

f: → N given by f(x) = x3


Show that the modulus function f: → R given by f(x) = |x| is neither one-one nor onto, where |x| is x, if x is positive or 0 and |x|  is − x if x is negative.


Show that function f: R `rightarrow` {x ∈ R : −1 < x < 1} defined by f(x) = `x/(1 + |x|)`, x ∈ R is one-one and onto function.


Classify the following function as injection, surjection or bijection : f : N → N given by f(x) = x3


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = 3 − 4x


If f : A → B is an injection, such that range of f = {a}, determine the number of elements in A.


Let A = {1, 2, 3}. Write all one-one from A to itself.


Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of each of the following:
(i) an injective map from A to B
(ii) a mapping from A to B which is not injective
(iii) a mapping from A to B.


Find gof and fog when f : R → R and g : R → R is defined by f(x) = 2x + 3 and  g(x) = x2 + 5 .


Find  fog (2) and gof (1) when : f : R → R ; f(x) = x2 + 8 and g : R → Rg(x) = 3x3 + 1.


   if `f (x) = sqrt(1-x)` and g(x) = `log_e` x are two real functions, then describe functions fog and gof.


Let A = {1, 2, 3, 4}; B = {3, 5, 7, 9}; C = {7, 23, 47, 79} and f : A → Bg : B → C be defined as f(x) = 2x + 1 and g(x) = x2 − 2. Express (gof)−1 and f−1 og−1 as the sets of ordered pairs and verify that (gof)−1 = f−1 og−1.


If f : Q → Qg : Q → Q are two functions defined by f(x) = 2 x and g(x) = x + 2, show that f and g are bijective maps. Verify that (gof)−1 = f−1 og −1.


Consider the function f : R→  [-9 , ∞ ]given by f(x) = 5x2 + 6x - 9. Prove that f is invertible with -1 (y) = `(sqrt(54 + 5y) -3)/5`             [CBSE 2015]


Let C denote the set of all complex numbers. A function f : C → C is defined by f(x) = x3. Write f−1(1).


Let f  be a function from C (set of all complex numbers) to itself given by f(x) = x3. Write f−1 (−1).


If f : R → R is defined by f(x) = x2, find f−1 (−25).


Let\[A = \left\{ x \in R : - 1 \leq x \leq 1 \right\} = \text{B and C} = \left\{ x \in R : x \geq 0 \right\} and\]\[S = \left\{ \left( x, y \right) \in A \times B : x^2 + y^2 = 1 \right\} \text{and } S_0 = \left\{ \left( x, y \right) \in A \times C : x^2 + y^2 = 1 \right\}\]

Then,



If a function\[f : [2, \infty )\text{ to B defined by f}\left( x \right) = x^2 - 4x + 5\] is a bijection, then B =


 Let
\[g\left( x \right) = 1 + x - \left[ x \right] \text{and} f\left( x \right) = \begin{cases}- 1, & x < 0 \\ 0, & x = 0, \\ 1, & x > 0\end{cases}\] where [x] denotes the greatest integer less than or equal to x. Then for all \[x, f \left( g \left( x \right) \right)\] is equal to


Let  \[f\left( x \right) = \frac{\alpha x}{x + 1}, x \neq - 1\] Then, for what value of α is \[f \left( f\left( x \right) \right) = x?\]

 


The distinct linear functions that map [−1, 1] onto [0, 2] are


Mark the correct alternative in the following question:

If the set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is


A function f: R→ R defined by f(x) = `(3x) /5 + 2`, x ∈ R. Show that f is one-one and onto. Hence find f−1.


Write about strcmp() function.


If A = {a, b, c, d} and f = {a, b), (b, d), (c, a), (d, c)}, show that f is one-one from A onto A. Find f–1


Let f: R → R be defined by f(x) = x2 + 1. Then, pre-images of 17 and – 3, respectively, are ______.


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

g(x) = |x|


If the set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is ______.


Let f: R – `{3/5}` → R be defined by f(x) = `(3x + 2)/(5x - 3)`. Then ______.


The domain of the function `"f"("x") = 1/(sqrt ({"sin x"} + {"sin" ( pi + "x")}))` where {.} denotes fractional part, is


An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.

Ravi decides to explore these sets for various types of relations and functions.

  • Ravi wants to know among those relations, how many functions can be formed from B to G?

Let f: R → R defined by f(x) = 3x. Choose the correct answer


A function f: x → y is said to be one – one (or injective) if:


Function f: R → R, defined by f(x) = `x/(x^2 + 1)` ∀ x ∈ R is not


`x^(log_5x) > 5` implies ______.


Let x is a real number such that are functions involved are well defined then the value of `lim_(t→0)[max{(sin^-1  x/3 + cos^-1  x/3)^2, min(x^2 + 4x + 7)}]((sin^-1t)/t)` where [.] is greatest integer function and all other brackets are usual brackets.


The function f(x) = [x], where [x] denotes the greatest integer less than or equal to x; is continuous at ______.


Let f(x) be a polynomial function of degree 6 such that `d/dx (f(x))` = (x – 1)3 (x – 3)2, then

Assertion (A): f(x) has a minimum at x = 1.

Reason (R): When `d/dx (f(x)) < 0, ∀  x ∈ (a - h, a)` and `d/dx (f(x)) > 0, ∀  x ∈ (a, a + h)`; where 'h' is an infinitesimally small positive quantity, then f(x) has a minimum at x = a, provided f(x) is continuous at x = a.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×