English

Check the injectivity and surjectivity of the following function: f: N → N given by f(x) = x3 - Mathematics

Advertisements
Advertisements

Question

Check the injectivity and surjectivity of the following function:

f: → N given by f(x) = x3

Sum

Solution

 f: N → N given by,

f(x) = x3

It is seen that for x, y ∈N, f(x) = f(y)

⇒ x3 = y3 

⇒ x = y.

∴ f is injective.

Now, 2 ∈ N. But there does not exist any element x in domain N such that f(x) = x3 = 2.

∴ f is not surjective

Hence, function f is injective but not surjective.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Relations and Functions - Exercise 1.2 [Page 10]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 1 Relations and Functions
Exercise 1.2 | Q 2.4 | Page 10

RELATED QUESTIONS

Following the case, state whether the function is one-one, onto, or bijective. Justify your answer.

f: → R defined by f(x) = 1 + x2


If the function `f(x) = sqrt(2x - 3)` is invertible then find its inverse. Hence prove that `(fof^(-1))(x) = x`


Which of the following functions from A to B are one-one and onto?
 f1 = {(1, 3), (2, 5), (3, 7)} ; A = {1, 2, 3}, B = {3, 5, 7}


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = |x|


Classify the following function as injection, surjection or bijection :

f : Z → Z, defined by f(x) = x2 + x


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = 3 − 4x


Find fog and gof  if : f(x) = c, c ∈ R, g(x) = sin `x^2`


Let f(x) = x2 + x + 1 and g(x) = sin x. Show that fog ≠ gof.


Consider f : R+ → [−5, ∞) given by f(x) = 9x2 + 6x − 5. Show that f is invertible with `f^-1 (x) = (sqrt (x +6)-1)/3 .`


Consider the function f : R→  [-9 , ∞ ]given by f(x) = 5x2 + 6x - 9. Prove that f is invertible with -1 (y) = `(sqrt(54 + 5y) -3)/5`             [CBSE 2015]


If A = {1, 2, 3, 4} and B = {abcd}, define any four bijections from A to B. Also give their inverse functions.


If f : A → Ag : A → A are two bijections, then prove that fog is an injection ?


Which one of the following graphs represents a function?


Let C denote the set of all complex numbers. A function f : C → C is defined by f(x) = x3. Write f−1(1).


If f : R → R be defined by f(x) = (3 − x3)1/3, then find fof (x).


Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. State whether f is one-one or not.


\[f : R \to R \text{given by} f\left( x \right) = x + \sqrt{x^2} \text{ is }\]

 

 


Which of the following functions from

\[A = \left\{ x : - 1 \leq x \leq 1 \right\}\]

to itself are bijections?

 

 

 


Let

\[A = \left\{ x : - 1 \leq x \leq 1 \right\} \text{and} f : A \to \text{A such that f}\left( x \right) = x|x|\]

 


Let

\[f : R \to R\]  be a function defined by

\[f\left( x \right) = \frac{e^{|x|} - e^{- x}}{e^x + e^{- x}} . \text{Then},\]
 

The function

\[f : R \to R, f\left( x \right) = x^2\]
 

The inverse of the function

\[f : R \to \left\{ x \in R : x < 1 \right\}\] given by

\[f\left( x \right) = \frac{e^x - e^{- x}}{e^x + e^{- x}}\] is 

 


Mark the correct alternative in the following question:

If the set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is


If A = {a, b, c, d} and f = {a, b), (b, d), (c, a), (d, c)}, show that f is one-one from A onto A. Find f–1


Let f: R → R be defined by f(x) = 3x – 4. Then f–1(x) is given by ______.


The domain of the function f: R → R defined by f(x) = `sqrt(x^2 - 3x + 2)` is ______


Let A be a finite set. Then, each injective function from A into itself is not surjective.


Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not

f = {(1, 4), (1, 5), (2, 4), (3, 5)}


Let f: R → R be given by f(x) = tan x. Then f–1(1) is ______.


Let f : R → R be defind by f(x) = `1/"x"  AA  "x" in "R".` Then f is ____________.


Let A = R – {3}, B = R – {1}. Let f : A → B be defined by `"f"("x") = ("x" - 2)/("x" - 3)` Then, ____________.


Let R be a relation on the set L of lines defined by l1 R l2 if l1 is perpendicular to l2, then relation R is ____________.


A general election of Lok Sabha is a gigantic exercise. About 911 million people were eligible to vote and voter turnout was about 67%, the highest ever


Let I be the set of all citizens of India who were eligible to exercise their voting right in the general election held in 2019. A relation ‘R’ is defined on I as follows:

R = {(V1, V2) ∶ V1, V2 ∈ I and both use their voting right in the general election - 2019}

  • Mr. ’X’ and his wife ‘W’ both exercised their voting right in the general election-2019, Which of the following is true?

Let the function f: R → R be defined by f(x) = 4x – 1, ∀ x ∈ R then 'f' is


The domain of the function `cos^-1((2sin^-1(1/(4x^2-1)))/π)` is ______.


Let f: R→R be defined as f(x) = 2x – 1 and g: R – {1}→R be defined as g(x) = `(x - 1/2)/(x - 1)`. Then the composition function f (g(x)) is ______.


Find the domain of sin–1 (x2 – 4).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×