English

Classify the Following Functions as Injection, Surjection Or Bijection : F : Z → Z, Defined By F(X) = X2 + X - Mathematics

Advertisements
Advertisements

Question

Classify the following function as injection, surjection or bijection :

f : Z → Z, defined by f(x) = x2 + x

Sum

Solution

  f : Z → Z, defined by f(x) = x2 + x

Injection test:

Let x and y be any two elements in the domain (Z), such that f(x) = f(y).

f(x= f(y)

x2y+ y

Here, we cannot say that x = y.

For example, x = 2 and y = - 3

 Then,

x2+x=22+2= 6

y2+y=(3)23= 6

So, we have two numbers 2 and -3 in the domain Z whose image is same as 6.

So, f is not an injection .

Surjection test:

Let y be any element in the co-domain (Z), such that f(x) = y for some element x in Z (domain).

f(x) = y

x2 y

Here, we cannot say ∈ Z.

For example, y = - 4.

x2 − 4

x20

=` (-1 ±sqrt-5)/2 = (-1 ±isqrt5)/2`  which is not in Z.

So, f is not a surjection and  f is not a bijection.

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Functions - Exercise 2.1 [Page 31]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 2 Functions
Exercise 2.1 | Q 5.06 | Page 31

RELATED QUESTIONS

Check the injectivity and surjectivity of the following function:

f: → N given by f(x) = x3


Following the case, state whether the function is one-one, onto, or bijective. Justify your answer.

f: → R defined by f(x) = 1 + x2


Let A and B be sets. Show that f: A × B → B × A such that (a, b) = (b, a) is bijective function.


Give an example of a function which is one-one but not onto ?


Classify the following function as injection, surjection or bijection :

 f : Z → Z, defined by f(x) = x − 5 


Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of each of the following:
(i) an injective map from A to B
(ii) a mapping from A to B which is not injective
(iii) a mapping from A to B.


Let f = {(3, 1), (9, 3), (12, 4)} and g = {(1, 3), (3, 3) (4, 9) (5, 9)}. Show that gof and fog are both defined. Also, find fog and gof.


Let f : R → R and g : R → R be defined by f(x) = + 1 and (x) = x − 1. Show that fog = gof = IR.


Give examples of two functions f : N → N and g : N → N, such that gof is onto but f is not onto.


Find fog and gof  if : f (x) = x2 g(x) = cos x .


Find fog and gof  if : f (x) = x+1, g (x) = sin x .


Let A = {1, 2, 3, 4}; B = {3, 5, 7, 9}; C = {7, 23, 47, 79} and f : A → Bg : B → C be defined as f(x) = 2x + 1 and g(x) = x2 − 2. Express (gof)−1 and f−1 og−1 as the sets of ordered pairs and verify that (gof)−1 = f−1 og−1.


If f : R → R is defined by f(x) = x2, write f−1 (25)


Let f  be a function from C (set of all complex numbers) to itself given by f(x) = x3. Write f−1 (−1).


Let f : R → R+ be defined by f(x) = axa > 0 and a ≠ 1. Write f−1 (x).


Let `f : R - {- 3/5}` → R be a function defined as `f  (x) = (2x)/(5x +3).` 

f-1 : Range of f → `R -{-3/5}`.


Write the domain of the real function

`f (x) = sqrtx - [x] .`


Write the domain of the real function

`f (x) = 1/(sqrt([x] - x)`.


Write whether f : R → R, given by `f(x) = x + sqrtx^2` is one-one, many-one, onto or into.


What is the range of the function

`f (x) = ([x - 1])/(x -1) ?`


If f : R → R is defined by f(x) = 3x + 2, find f (f (x)).


Let\[A = \left\{ x \in R : - 1 \leq x \leq 1 \right\} = \text{B and C} = \left\{ x \in R : x \geq 0 \right\} and\]\[S = \left\{ \left( x, y \right) \in A \times B : x^2 + y^2 = 1 \right\} \text{and } S_0 = \left\{ \left( x, y \right) \in A \times C : x^2 + y^2 = 1 \right\}\]

Then,



A function f  from the set of natural numbers to integers defined by

`{([n-1]/2," when  n is  odd"   is ),(-n/2,when  n  is  even ) :}`

 

 


Mark the correct alternative in the following question:

If the set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is


Mark the correct alternative in the following question:
Let f :  \[-\] \[\left\{ \frac{3}{5} \right\}\] \[\to\]  R be defined by f(x) = \[\frac{3x + 2}{5x - 3}\] Then,

 


Which function is used to check whether a character is alphanumeric or not?


Are the following set of ordered pairs functions? If so, examine whether the mapping is injective or surjective.
{(x, y): x is a person, y is the mother of x}


The number of bijective functions from set A to itself when A contains 106 elements is ____________.


The function f : R → R given by f(x) = x3 – 1 is ____________.


Let f : R `->` R be a function defined by f(x) = x3 + 4, then f is ______.


Let f : R → R, g : R → R be two functions such that f(x) = 2x – 3, g(x) = x3 + 5. The function (fog)-1 (x) is equal to ____________.


Let R be a relation on the set L of lines defined by l1 R l2 if l1 is perpendicular to l2, then relation R is ____________.


Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.

Answer the following questions using the above information.

  • Let : N → R be defined by f(x) = x2. Range of the function among the following is ____________.

If `f : R -> R^+  U {0}` be defined by `f(x) = x^2, x ∈ R`. The mapping is


A function f: x → y is said to be one – one (or injective) if:


The domain of function is f(x) = `sqrt(-log_0.3(x - 1))/sqrt(x^2 + 2x + 8)` is ______.


Let f(x) = ax (a > 0) be written as f(x) = f1(x) + f2(x), where f1(x) is an even function and f2(x) is an odd function. Then f1(x + y) + f1(x – y) equals ______.


Let A = {1, 2, 3, ..., 10} and f : A `rightarrow` A be defined as

f(k) = `{{:(k + 1, if k  "is odd"),(     k, if k  "is even"):}`.

Then the number of possible functions g : A `rightarrow` A such that gof = f is ______.


For x ∈ R, x ≠ 0, let f0(x) = `1/(1 - x)` and fn+1 (x) = f0(fn(x)), n = 0, 1, 2, .... Then the value of `f_100(3) + f_1(2/3) + f_2(3/2)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×