English

Let F = {(3, 1), (9, 3), (12, 4)} and G = {(1, 3), (3, 3) (4, 9) (5, 9)}. Show that Gof and Fog Are Both Defined. Also, Find Fog and Gof. - Mathematics

Advertisements
Advertisements

Question

Let f = {(3, 1), (9, 3), (12, 4)} and g = {(1, 3), (3, 3) (4, 9) (5, 9)}. Show that gof and fog are both defined. Also, find fog and gof.

Sum

Solution

f = {(3, 1), (9, 3), (12, 4)} and g = {(1, 3), (3, 3) (4, 9) (5, 9)}
f : {3, 9, 12} → {1, 3,4} and g : {1, 3, 4, 5} → {3, 9}

Co-domain of f is a subset of the domain of g.
So, gof exists and gof : {3, 9, 12} → {3, 9}

(gof) (3)=g (f (3))=g (1=3

(gof) (9)=g (f (9))=g (3)=3

(gof) (12)=g (f (12))=g (4)=9

⇒ gof ={(3, 3), (9, 3), (12, 9)}

Co-domain of g is a subset of the domain of f.
So, fog exists and fog : {1, 3, 4, 5} → {3, 9, 12}

(fog) (1)=f (g (1))=f (3)=1

(fog) (3)=f (g (3))=f (3)=1

(fog) (4)=f (g (4))=f (9)=3

(fog) (5)=f (g (5))=f (9)=3

⇒ fog={(1, 1), (3, 1), (4, 3), (5, 3)}

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Functions - Exercise 2.2 [Page 46]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 2 Functions
Exercise 2.2 | Q 2 | Page 46

RELATED QUESTIONS

Show that the function f: R* → R* defined by `f(x) = 1/x` is one-one and onto, where R* is the set of all non-zero real numbers. Is the result true if the domain R* is replaced by N, with co-domain being same as R?


Show that the Signum Function f: R → R, given by `f(x) = {(1, if x > 0), (0, if x  = 0), (-1, if x < 0):}`  is neither one-one nor onto


Show that function f: R `rightarrow` {x ∈ R : −1 < x < 1} defined by f(x) = `x/(1 + |x|)`, x ∈ R is one-one and onto function.


Give an example of a function which is neither one-one nor onto ?


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = x3 + 1


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = sin2x + cos2x


Show that the function f : R − {3} → R − {2} given by f(x) = `(x-2)/(x-3)` is a bijection.


Let A = [-1, 1]. Then, discuss whether the following functions from A to itself is one-one, onto or bijective : h(x) = x2 


Let A = {1, 2, 3}. Write all one-one from A to itself.


Find gof and fog when f : R → R and g : R → R is  defined by  f(x) = 8x3 and  g(x) = x1/3.


Let f : R → R and g : R → R be defined by f(x) = x2 and g(x) = x + 1. Show that fog ≠ gof.


If f : A → B and g : B → C are one-one functions, show that gof is a one-one function.


Let fgh be real functions given by f(x) = sin xg (x) = 2x and h (x) = cos x. Prove that fog = go (fh).


Find f −1 if it exists : f : A → B, where A = {0, −1, −3, 2}; B = {−9, −3, 0, 6} and f(x) = 3 x.


Let f : [−1, ∞) → [−1, ∞) be given by f(x) = (x + 1)2 − 1, x ≥ −1. Show that f is invertible. Also, find the set S = {x : f(x) = f−1 (x)}.


Let f be an invertible real function. Write ( f-1  of ) (1) + ( f-1  of ) (2) +..... +( f-1 of ) (100 )


Let A = {1, 2, 3, 4} and B = {ab} be two sets. Write the total number of onto functions from A to B.


Let f : R → R be the function defined by f(x) = 4x − 3 for all x ∈ R Then write f .   [NCERT EXEMPLAR]


Let A = {abcd} and f : A → A be given by f = {( a,b ),( b , d ),( c , a ) , ( d , c )} write `f^-1`. [NCERT EXEMPLAR]


Let fg : R → R be defined by f(x) = 2x + l and g(x) = x2−2 for all x

∈ R, respectively. Then, find gof.  [NCERT EXEMPLAR]


If a function g = {(1, 1), (2, 3), (3, 5), (4, 7)} is described by g(x) = \[\alpha x + \beta\]  then find the values of \[\alpha\] and \[ \beta\] . [NCERT EXEMPLAR]


\[f : R \to R \text{given by} f\left( x \right) = x + \sqrt{x^2} \text{ is }\]

 

 


Let

f : R → R be given by

\[f\left( x \right) = \left[ x^2 \right] + \left[ x + 1 \right] - 3\]

where [x] denotes the greatest integer less than or equal to x. Then, f(x) is
 


(d) one-one and onto


Let f be an injective map with domain {xyz} and range {1, 2, 3}, such that exactly one of the following statements is correct and the remaining are false.

\[f\left( x \right) = 1, f\left( y \right) \neq 1, f\left( z \right) \neq 2 .\]

The value of

\[f^{- 1} \left( 1 \right)\] is 

 


The function

\[f : R \to R\] defined by\[f\left( x \right) = \left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)\]

(a) one-one but not onto
(b) onto but not one-one
(c) both one and onto
(d) neither one-one nor onto


The  function f : [-1/2, 1/2, 1/2] → [-π /2,π/2], defined by f (x) = `sin^-1` (3x - `4x^3`), is

 


Let \[f\left(x\right) = x^3\] be a function with domain {0, 1, 2, 3}. Then domain of \[f^{-1}\] is ______.


Mark the correct alternative in the following question:
Let A = {1, 2, ... , n} and B = {a, b}. Then the number of subjections from A into B is


A function f: R→ R defined by f(x) = `(3x) /5 + 2`, x ∈ R. Show that f is one-one and onto. Hence find f−1.


If f(x) = `(x+3)/(4x−5) , "g"(x) = (3+5x)/(4x−1)` then verify that `("fog") (x)` = x.


Which function is used to check whether a character is alphanumeric or not?


Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not

h = {(1,4), (2, 5), (3, 5)}


Let A = {0, 1} and N be the set of natural numbers. Then the mapping f: N → A defined by f(2n – 1) = 0, f(2n) = 1, ∀ n ∈ N, is onto.


If N be the set of all-natural numbers, consider f: N → N such that f(x) = 2x, ∀ x ∈ N, then f is ____________.


Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. Based on the given information, f is best defined as:


Given a function If as f(x) = 5x + 4, x ∈ R. If g : R → R is inverse of function ‘f then


Number of integral values of x satisfying the inequality `(3/4)^(6x + 10 - x^2) < 27/64` is ______.


Let f: R→R be a polynomial function satisfying f(x + y) = f(x) + f(y) + 3xy(x + y) –1 ∀ x, y ∈ R and f'(0) = 1, then `lim_(x→∞)(f(2x))/(f(x)` is equal to ______.


Let A = R – {2} and B = R – {1}. If f: A `→` B is a function defined by f(x) = `(x - 1)/(x - 2)` then show that f is a one-one and an onto function.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×