English

Show that the function f: R* → R* defined by f(x)=1x is one-one and onto, where R* is the set of all non-zero real numbers. Is the result true if the domain R - Mathematics

Advertisements
Advertisements

Question

Show that the function f: R* → R* defined by `f(x) = 1/x` is one-one and onto, where R* is the set of all non-zero real numbers. Is the result true if the domain R* is replaced by N, with co-domain being same as R?

Sum

Solution

It is given that f: R* → R* is defined by `f(x) = 1/x`

One-one:

f(x) = f(y)

`=> 1/x = 1/y`

=> x = y

∴f is one-one.

Onto:

It is clear that for y∈ R*, there exists  ` x= 1/y in R ("Exists as y" != 0)`such that

`f(x) = 1/((1/y)) = y`

∴f is onto.

Thus, the given function (f) is one-on-one..

Now, consider function g: N → R* defined by

`f(x) = 1/x`

We have,

`f(x_1) = g(x_2) =>  1/x_1 = 1/x_2`

`=> x_1 = x_2`

∴f is one-one.

Further, it is clear that g is not onto, as for 1.2 ∈ R* there does not exit any x in N such that f(x) = `1/1.2`

Hence, function f is one-to-one but not onto.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Relations and Functions - Exercise 1.2 [Page 10]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 1 Relations and Functions
Exercise 1.2 | Q 1 | Page 10

RELATED QUESTIONS

Show that function f: R `rightarrow` {x ∈ R : −1 < x < 1} defined by f(x) = `x/(1 + |x|)`, x ∈ R is one-one and onto function.


Let A = {−1, 0, 1} and f = {(xx2) : x ∈ A}. Show that f : A → A is neither one-one nor onto.


Classify the following function as injection, surjection or bijection :  f : Z → Z given by f(x) = x2


Classify the following function as injection, surjection or bijection :  f : Z → Z given by f(x) = x3


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = |x|


Classify the following function as injection, surjection or bijection :

f : Z → Z, defined by f(x) = x2 + x


Let A = [-1, 1]. Then, discuss whether the following function from A to itself is one-one, onto or bijective : `f (x) = x/2`


Let f : N → N be defined by

`f(n) = { (n+ 1, if n  is  odd),( n-1 , if n  is  even):}`

Show that f is a bijection. 

                      [CBSE 2012, NCERT]


Find gof and fog when f : R → R and g : R → R is defined by  f(x) = x and g(x) = |x| .


If f : A → B and g : B → C are onto functions, show that gof is a onto function.


Find fog and gof  if : f (x) = x+1, g (x) = sin x .


Find fog and gof  if : f(x)= x + 1, g (x) = 2x + 3 .


Find fog and gof  if : f(x) = `x^2` + 2 , g (x) = 1 − `1/ (1-x)`.


If f(x) = sin x and g(x) = 2x be two real functions, then describe gof and fog. Are these equal functions?


Let fgh be real functions given by f(x) = sin xg (x) = 2x and h (x) = cos x. Prove that fog = go (fh).


Let f : R `{- 4/3} `- 43 →">→ R be a function defined as f(x) = `(4x)/(3x +4)` . Show that f : R - `{-4/3}`→ Rang (f) is one-one and onto. Hence, find f -1.


Let f be a function from R to R, such that f(x) = cos (x + 2). Is f invertible? Justify your answer.


Let `f : R - {- 3/5}` → R be a function defined as `f  (x) = (2x)/(5x +3).` 

f-1 : Range of f → `R -{-3/5}`.


Write the domain of the real function

`f (x) = sqrtx - [x] .`


Write whether f : R → R, given by `f(x) = x + sqrtx^2` is one-one, many-one, onto or into.


Write the domain of the real function f defined by f(x) = `sqrt (25 -x^2)`   [NCERT EXEMPLAR]


Let\[A = \left\{ x \in R : - 1 \leq x \leq 1 \right\} = \text{B and C} = \left\{ x \in R : x \geq 0 \right\} and\]\[S = \left\{ \left( x, y \right) \in A \times B : x^2 + y^2 = 1 \right\} \text{and } S_0 = \left\{ \left( x, y \right) \in A \times C : x^2 + y^2 = 1 \right\}\]

Then,



Let

\[A = \left\{ x : - 1 \leq x \leq 1 \right\} \text{and} f : A \to \text{A such that f}\left( x \right) = x|x|\]

 


If a function\[f : [2, \infty )\text{ to B defined by f}\left( x \right) = x^2 - 4x + 5\] is a bijection, then B =


The  function f : [-1/2, 1/2, 1/2] → [-π /2,π/2], defined by f (x) = `sin^-1` (3x - `4x^3`), is

 


Let

\[f : R \to R\]  be a function defined by

\[f\left( x \right) = \frac{e^{|x|} - e^{- x}}{e^x + e^{- x}} . \text{Then},\]
 

Let

\[f : R \to R\]
\[f\left( x \right) = \frac{x^2 - 8}{x^2 + 2}\]
Then,  f is


The function \[f : R \to R\] defined by

\[f\left( x \right) = 6^x + 6^{|x|}\] is 

 


If f(x) = `(x+3)/(4x−5) , "g"(x) = (3+5x)/(4x−1)` then verify that `("fog") (x)` = x.


Let f: R → R be defined by f(x) = 3x – 4. Then f–1(x) is given by ______.


Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not

k = {(1,4), (2, 5)}


If the set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is ______.


Let f: `[2, oo)` → R be the function defined by f(x) = x2 – 4x + 5, then the range of f is ______.


Given a function If as f(x) = 5x + 4, x ∈ R. If g : R → R is inverse of function ‘f then


Let f: R→R be defined as f(x) = 2x – 1 and g: R – {1}→R be defined as g(x) = `(x - 1/2)/(x - 1)`. Then the composition function f (g(x)) is ______.


Let f: R→R be a continuous function such that f(x) + f(x + 1) = 2, for all x ∈ R. If I1 = `int_0^8f(x)dx` and I2 = `int_(-1)^3f(x)dx`, then the value of I1 + 2I2 is equal to ______.


Let a and b are two positive integers such that b ≠ 1. Let g(a, b) = Number of lattice points inside the quadrilateral formed by lines x = 0, y = 0, x = b and y = a. f(a, b) = `[a/b] + [(2a)/b] + ... + [((b - 1)a)/b]`, then the value of `[(g(101, 37))/(f(101, 37))]` is ______.

(Note P(x, y) is lattice point if x, y ∈ I)

(where [.] denotes greatest integer function)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×