English

If the set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is ______. - Mathematics

Advertisements
Advertisements

Question

If the set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is ______.

Options

  • 720

  • 120

  • 0

  • none of these

MCQ
Fill in the Blanks

Solution

If the set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is 0.

Explanation:

 Set A contains 5 elements and the set B contains 6 elements.

For one-one function each element in set B is assigned to only one element in set A.

Thus only '5' elements in set B are assigned to '5' elements of set 'A'

Thus range of function does not contain all '6' elements of set 'B'.

Thus if function is one-one it cannot be onto

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Relations And Functions - Exercise [Page 14]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 1 Relations And Functions
Exercise | Q 35 | Page 14

RELATED QUESTIONS

Following the case, state whether the function is one-one, onto, or bijective. Justify your answer.

f : → R defined by f(x) = 3 − 4x


Let A and B be sets. Show that f: A × B → B × A such that (a, b) = (b, a) is bijective function.


Give examples of two functions fN → Z and gZ → Z such that g o f is injective but gis not injective.

(Hint: Consider f(x) = x and g(x) =|x|)


Find the number of all onto functions from the set {1, 2, 3, …, n} to itself.


Classify the following function as injection, surjection or bijection :  f : Z → Z given by f(x) = x3


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = |x|


Classify the following function as injection, surjection or bijection :

f : Q → Q, defined by f(x) = x3 + 1


Give examples of two one-one functions f1 and f2 from R to R, such that f1 + f2 : R → R. defined by (f1 + f2) (x) = f1 (x) + f2 (x) is not one-one.


Verify associativity for the following three mappings : f : N → Z0 (the set of non-zero integers), g : Z0 → Q and h : Q → R given by f(x) = 2xg(x) = 1/x and h(x) = ex.


Find fog and gof  if : f(x) = `x^2` + 2 , g (x) = 1 − `1/ (1-x)`.


If A = {1, 2, 3, 4} and B = {abcd}, define any four bijections from A to B. Also give their inverse functions.


If f : R → R is given by f(x) = x3, write f−1 (1).


If f : R → R is defined by f(x) = 10 x − 7, then write f−1 (x).


Write the domain of the real function f defined by f(x) = `sqrt (25 -x^2)`   [NCERT EXEMPLAR]


The function

\[f : R \to R, f\left( x \right) = x^2\]
 

The function \[f : R \to R\] defined by

\[f\left( x \right) = 6^x + 6^{|x|}\] is 

 


Let  \[f\left( x \right) = \frac{1}{1 - x} . \text{Then}, \left\{ f o \left( fof \right) \right\} \left( x \right)\]

 


Let \[f\left(x\right) = x^3\] be a function with domain {0, 1, 2, 3}. Then domain of \[f^{-1}\] is ______.


Show that the function f: R → R defined by f(x) = `x/(x^2 + 1)`, ∀ ∈ + R , is neither one-one nor onto


Set A has 3 elements and the set B has 4 elements. Then the number of injective mappings that can be defined from A to B is ______.


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

g(x) = |x|


Let f: R → R be the functions defined by f(x) = x3 + 5. Then f–1(x) is ______.


If N be the set of all-natural numbers, consider f: N → N such that f(x) = 2x, ∀ x ∈ N, then f is ____________.


A general election of Lok Sabha is a gigantic exercise. About 911 million people were eligible to vote and voter turnout was about 67%, the highest ever


Let I be the set of all citizens of India who were eligible to exercise their voting right in the general election held in 2019. A relation ‘R’ is defined on I as follows:

R = {(V1, V2) ∶ V1, V2 ∈ I and both use their voting right in the general election - 2019}

  • Mr. ’X’ and his wife ‘W’ both exercised their voting right in the general election-2019, Which of the following is true?

Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.

Answer the following questions using the above information.

  • Let : N → R be defined by f(x) = x2. Range of the function among the following is ____________.

A function f: x → y is said to be one – one (or injective) if:


Function f: R → R, defined by f(x) = `x/(x^2 + 1)` ∀ x ∈ R is not


If f: R→R is a function defined by f(x) = `[x - 1]cos((2x - 1)/2)π`, where [ ] denotes the greatest integer function, then f is ______.


The solution set of the inequation log1/3(x2 + x + 1) + 1 > 0 is ______.


Let f(n) = `[1/3 + (3n)/100]n`, where [n] denotes the greatest integer less than or equal to n. Then `sum_(n = 1)^56f(n)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×