हिंदी

If the set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If the set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is ______.

विकल्प

  • 720

  • 120

  • 0

  • none of these

MCQ
रिक्त स्थान भरें

उत्तर

If the set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is 0.

Explanation:

 Set A contains 5 elements and the set B contains 6 elements.

For one-one function each element in set B is assigned to only one element in set A.

Thus only '5' elements in set B are assigned to '5' elements of set 'A'

Thus range of function does not contain all '6' elements of set 'B'.

Thus if function is one-one it cannot be onto

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Relations And Functions - Exercise [पृष्ठ १४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 1 Relations And Functions
Exercise | Q 35 | पृष्ठ १४

वीडियो ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्न

Let A and B be sets. Show that f: A × B → B × A such that (a, b) = (b, a) is bijective function.


Show that function f: R `rightarrow` {x ∈ R : −1 < x < 1} defined by f(x) = `x/(1 + |x|)`, x ∈ R is one-one and onto function.


Show that the function f: R → R given by f(x) = x3 is injective.


Classify the following function as injection, surjection or bijection :

 f : Z → Z, defined by f(x) = x − 5 


Classify the following function as injection, surjection or bijection :

 f : R → R, defined by f(x) = x3 − x


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = sin2x + cos2x


Give examples of two surjective functions f1 and f2 from Z to Z such that f1 + f2 is not surjective.


 Find fog and gof  if  : f (x) = ex g(x) = loge x .


If f : A → Ag : A → A are two bijections, then prove that fog is a surjection ?


If f : R → R defined by f(x) = 3x − 4 is invertible, then write f−1 (x).


If f : {5, 6} → {2, 3} and g : {2, 3} → {5, 6} are given by f = {(5, 2), (6, 3)} and g = {(2, 5), (3, 6)}, then find fog.    [NCERT EXEMPLAR]


Let f : R → R be the function defined by f(x) = 4x − 3 for all x ∈ R Then write f .   [NCERT EXEMPLAR]


The function f : R → R defined by

`f (x) = 2^x + 2^(|x|)` is 

 


The range of the function

\[f\left( x \right) =^{7 - x} P_{x - 3}\]

 


The distinct linear functions that map [−1, 1] onto [0, 2] are


Mark the correct alternative in the following question:

Let f : → R be given by f(x) = tanx. Then, f-1(1) is

 

 


Let A = ℝ − {3}, B = ℝ − {1}. Let f : A → B be defined by \[f\left( x \right) = \frac{x - 2}{x - 3}, \forall x \in A\] Show that f is bijective. Also, find
(i) x, if f−1(x) = 4
(ii) f−1(7)


Which function is used to check whether a character is alphanumeric or not?


Write about strlen() function.


Let N be the set of natural numbers and the function f: N → N be defined by f(n) = 2n + 3 ∀ n ∈ N. Then f is ______.


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

f(x) = `x/2`


Which of the following functions from Z into Z are bijections?


The smallest integer function f(x) = [x] is ____________.


Which of the following functions from Z into Z is bijective?


Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. Based on the given information, f is best defined as:


Given a function If as f(x) = 5x + 4, x ∈ R. If g : R → R is inverse of function ‘f then


An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.

Ravi decides to explore these sets for various types of relations and functions.

  • Ravi wants to find the number of injective functions from B to G. How many numbers of injective functions are possible?

Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.

Answer the following questions using the above information.

  • Let : N → R be defined by f(x) = x2. Range of the function among the following is ____________.

Let f: R → R defined by f(x) = 3x. Choose the correct answer


Write the domain and range (principle value branch) of the following functions:

f(x) = tan–1 x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×