हिंदी

Let A and B be sets. Show that f: A × B → B × A such that (a, b) = (b, a) is bijective function. - Mathematics

Advertisements
Advertisements

प्रश्न

Let A and B be sets. Show that f: A × B → B × A such that (a, b) = (b, a) is bijective function.

योग

उत्तर

f: A × B → B × A is defined as f(a, b) = (b, a).

Let `(a_1, b_1), (a_2, b_2) in A xx B " such that " f(a_1, b_1) = (a_2, b_2)`

`=> (b_1 , a_1) = (b_2, a_2)`

`=> b_1 = b_2 and a_1 = a_2`

`=> (a_1, b_1) =(a_2, b_2)` 

∴ f is injective.

Now, let (b, a) ∈ B × A be any element.

Then, there exists (a, b) ∈A × B such that f(a, b) = (b, a). [By definition of f]

∴ f is bijective.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Relations and Functions - Exercise 1.2 [पृष्ठ ११]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 1 Relations and Functions
Exercise 1.2 | Q 8 | पृष्ठ ११

वीडियो ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्न

Show that the modulus function f: → R given by f(x) = |x| is neither one-one nor onto, where |x| is x, if x is positive or 0 and |x|  is − x if x is negative.


Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. Show that f is one-one.


Given examples of two functions fN → N and gN → N such that gof is onto but is not onto.

(Hint: Consider f(x) = x + 1 and `g(x) = {(x-1, ifx >1),(1, if x = 1):}`


Give an example of a function which is neither one-one nor onto ?


Classify the following function as injection, surjection or bijection : f : N → N given by f(x) = x2


Classify the following function as injection, surjection or bijection :

 f : R → R, defined by f(x) = sinx


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = 3 − 4x


Show that the function f : R − {3} → R − {2} given by f(x) = `(x-2)/(x-3)` is a bijection.


Let A = {1, 2, 3}. Write all one-one from A to itself.


Show that the logarithmic function  f : R0+ → R   given  by f (x)  loga x ,a> 0   is   a  bijection.


Show that f : R→ R, given by f(x) = x — [x], is neither one-one nor onto.


Verify associativity for the following three mappings : f : N → Z0 (the set of non-zero integers), g : Z0 → Q and h : Q → R given by f(x) = 2xg(x) = 1/x and h(x) = ex.


Consider f : N → Ng : N → N and h : N → R defined as f(x) = 2xg(y) = 3y + 4 and h(z) = sin z for all xyz ∈ N. Show that ho (gof) = (hogof.


Find fog and gof  if : f(x) = c, c ∈ R, g(x) = sin `x^2`


Find f −1 if it exists : f : A → B, where A = {0, −1, −3, 2}; B = {−9, −3, 0, 6} and f(x) = 3 x.


Let A = {1, 2, 3, 4}; B = {3, 5, 7, 9}; C = {7, 23, 47, 79} and f : A → Bg : B → C be defined as f(x) = 2x + 1 and g(x) = x2 − 2. Express (gof)−1 and f−1 og−1 as the sets of ordered pairs and verify that (gof)−1 = f−1 og−1.


Show that the function f : Q → Q, defined by f(x) = 3x + 5, is invertible. Also, find f−1


If f : R → (0, 2) defined by `f (x) =(e^x - e^(x))/(e^x +e^(-x))+1`is invertible , find f-1.


Write the domain of the real function

`f (x) = sqrt([x] - x) .`


Write the domain of the real function

`f (x) = 1/(sqrt([x] - x)`.


The function 

f : A → B defined by 

f (x) = - x2 + 6x - 8 is a bijection if 

 

 

 

 


The distinct linear functions that map [−1, 1] onto [0, 2] are


Let

\[f : [2, \infty ) \to X\] be defined by

\[f\left( x \right) = 4x - x^2\] Then, f is invertible if X =

 


Let 
\[f : R \to R\]  be given by \[f\left( x \right) = x^2 - 3\] Then, \[f^{- 1}\] is given by 

 


If f(x) = `(x+3)/(4x−5) , "g"(x) = (3+5x)/(4x−1)` then verify that `("fog") (x)` = x.


Write about strlen() function.


Let f: R → R be defined by f(x) = 3x – 4. Then f–1(x) is given by ______.


Consider the set A containing n elements. Then, the total number of injective functions from A onto itself is ______


Are the following set of ordered pairs functions? If so, examine whether the mapping is injective or surjective.
{(x, y): x is a person, y is the mother of x}


Let C be the set of complex numbers. Prove that the mapping f: C → R given by f(z) = |z|, ∀ z ∈ C, is neither one-one nor onto.


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

h(x) = x|x|


Let f: R → R be defined by f(x) = `1/x` ∀ x ∈ R. Then f is ______.


The function f : A → B defined by f(x) = 4x + 7, x ∈ R is ____________.


Let f: R → R defined by f(x) = x4. Choose the correct answer


If `f : R -> R^+  U {0}` be defined by `f(x) = x^2, x ∈ R`. The mapping is


Function f: R → R, defined by f(x) = `x/(x^2 + 1)` ∀ x ∈ R is not


Let f(n) = `[1/3 + (3n)/100]n`, where [n] denotes the greatest integer less than or equal to n. Then `sum_(n = 1)^56f(n)` is equal to ______.


The graph of the function y = f(x) is symmetrical about the line x = 2, then ______.


Let A = {1, 2, 3, ..., 10} and f : A `rightarrow` A be defined as

f(k) = `{{:(k + 1, if k  "is odd"),(     k, if k  "is even"):}`.

Then the number of possible functions g : A `rightarrow` A such that gof = f is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×