Advertisements
Advertisements
प्रश्न
Let A and B be sets. Show that f: A × B → B × A such that (a, b) = (b, a) is bijective function.
उत्तर
f: A × B → B × A is defined as f(a, b) = (b, a).
Let `(a_1, b_1), (a_2, b_2) in A xx B " such that " f(a_1, b_1) = (a_2, b_2)`
`=> (b_1 , a_1) = (b_2, a_2)`
`=> b_1 = b_2 and a_1 = a_2`
`=> (a_1, b_1) =(a_2, b_2)`
∴ f is injective.
Now, let (b, a) ∈ B × A be any element.
Then, there exists (a, b) ∈A × B such that f(a, b) = (b, a). [By definition of f]
∴ f is bijective.
APPEARS IN
संबंधित प्रश्न
Show that the modulus function f: R → R given by f(x) = |x| is neither one-one nor onto, where |x| is x, if x is positive or 0 and |x| is − x if x is negative.
Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. Show that f is one-one.
Given examples of two functions f: N → N and g: N → N such that gof is onto but f is not onto.
(Hint: Consider f(x) = x + 1 and `g(x) = {(x-1, ifx >1),(1, if x = 1):}`
Give an example of a function which is neither one-one nor onto ?
Classify the following function as injection, surjection or bijection : f : N → N given by f(x) = x2
Classify the following function as injection, surjection or bijection :
f : R → R, defined by f(x) = sinx
Classify the following function as injection, surjection or bijection :
f : R → R, defined by f(x) = 3 − 4x
Show that the function f : R − {3} → R − {2} given by f(x) = `(x-2)/(x-3)` is a bijection.
Let A = {1, 2, 3}. Write all one-one from A to itself.
Show that the logarithmic function f : R0+ → R given by f (x) loga x ,a> 0 is a bijection.
Show that f : R→ R, given by f(x) = x — [x], is neither one-one nor onto.
Verify associativity for the following three mappings : f : N → Z0 (the set of non-zero integers), g : Z0 → Q and h : Q → R given by f(x) = 2x, g(x) = 1/x and h(x) = ex.
Consider f : N → N, g : N → N and h : N → R defined as f(x) = 2x, g(y) = 3y + 4 and h(z) = sin z for all x, y, z ∈ N. Show that ho (gof) = (hog) of.
Find fog and gof if : f(x) = c, c ∈ R, g(x) = sin `x^2`
Find f −1 if it exists : f : A → B, where A = {0, −1, −3, 2}; B = {−9, −3, 0, 6} and f(x) = 3 x.
Let A = {1, 2, 3, 4}; B = {3, 5, 7, 9}; C = {7, 23, 47, 79} and f : A → B, g : B → C be defined as f(x) = 2x + 1 and g(x) = x2 − 2. Express (gof)−1 and f−1 og−1 as the sets of ordered pairs and verify that (gof)−1 = f−1 og−1.
Show that the function f : Q → Q, defined by f(x) = 3x + 5, is invertible. Also, find f−1
If f : R → (0, 2) defined by `f (x) =(e^x - e^(x))/(e^x +e^(-x))+1`is invertible , find f-1.
Write the domain of the real function
`f (x) = sqrt([x] - x) .`
Write the domain of the real function
`f (x) = 1/(sqrt([x] - x)`.
The function
f : A → B defined by
f (x) = - x2 + 6x - 8 is a bijection if
The distinct linear functions that map [−1, 1] onto [0, 2] are
Let
\[f : [2, \infty ) \to X\] be defined by
\[f\left( x \right) = 4x - x^2\] Then, f is invertible if X =
Let
\[f : R \to R\] be given by \[f\left( x \right) = x^2 - 3\] Then, \[f^{- 1}\] is given by
If f(x) = `(x+3)/(4x−5) , "g"(x) = (3+5x)/(4x−1)` then verify that `("fog") (x)` = x.
Write about strlen() function.
Let f: R → R be defined by f(x) = 3x – 4. Then f–1(x) is given by ______.
Consider the set A containing n elements. Then, the total number of injective functions from A onto itself is ______
Are the following set of ordered pairs functions? If so, examine whether the mapping is injective or surjective.
{(x, y): x is a person, y is the mother of x}
Let C be the set of complex numbers. Prove that the mapping f: C → R given by f(z) = |z|, ∀ z ∈ C, is neither one-one nor onto.
Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:
h(x) = x|x|
Let f: R → R be defined by f(x) = `1/x` ∀ x ∈ R. Then f is ______.
The function f : A → B defined by f(x) = 4x + 7, x ∈ R is ____________.
Let f: R → R defined by f(x) = x4. Choose the correct answer
If `f : R -> R^+ U {0}` be defined by `f(x) = x^2, x ∈ R`. The mapping is
Function f: R → R, defined by f(x) = `x/(x^2 + 1)` ∀ x ∈ R is not
Let f(n) = `[1/3 + (3n)/100]n`, where [n] denotes the greatest integer less than or equal to n. Then `sum_(n = 1)^56f(n)` is equal to ______.
The graph of the function y = f(x) is symmetrical about the line x = 2, then ______.
Let A = {1, 2, 3, ..., 10} and f : A `rightarrow` A be defined as
f(k) = `{{:(k + 1, if k "is odd"),( k, if k "is even"):}`.
Then the number of possible functions g : A `rightarrow` A such that gof = f is ______.