मराठी

Let A and B be sets. Show that f: A × B → B × A such that (a, b) = (b, a) is bijective function. - Mathematics

Advertisements
Advertisements

प्रश्न

Let A and B be sets. Show that f: A × B → B × A such that (a, b) = (b, a) is bijective function.

बेरीज

उत्तर

f: A × B → B × A is defined as f(a, b) = (b, a).

Let `(a_1, b_1), (a_2, b_2) in A xx B " such that " f(a_1, b_1) = (a_2, b_2)`

`=> (b_1 , a_1) = (b_2, a_2)`

`=> b_1 = b_2 and a_1 = a_2`

`=> (a_1, b_1) =(a_2, b_2)` 

∴ f is injective.

Now, let (b, a) ∈ B × A be any element.

Then, there exists (a, b) ∈A × B such that f(a, b) = (b, a). [By definition of f]

∴ f is bijective.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Relations and Functions - Exercise 1.2 [पृष्ठ ११]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 1 Relations and Functions
Exercise 1.2 | Q 8 | पृष्ठ ११

व्हिडिओ ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्‍न

Prove that the greatest integer function f: → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.


Show that the modulus function f: → R given by f(x) = |x| is neither one-one nor onto, where |x| is x, if x is positive or 0 and |x|  is − x if x is negative.


Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. Show that f is one-one.


Let f: N → N be defined by f(n) = `{((n+1)/2, ",if n is odd"),(n/2,",n is even"):}` for all n ∈ N.

State whether the function f is bijective. Justify your answer.


Give an example of a function which is not one-one but onto ?


Classify the following function as injection, surjection or bijection :

 f : R → R, defined by f(x) = sinx


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = 1 + x2


Show that the function f : R − {3} → R − {2} given by f(x) = `(x-2)/(x-3)` is a bijection.


Let A = {1, 2, 3}. Write all one-one from A to itself.


Give examples of two one-one functions f1 and f2 from R to R, such that f1 + f2 : R → R. defined by (f1 + f2) (x) = f1 (x) + f2 (x) is not one-one.


Give examples of two functions f : N → Z and g : Z → Z, such that gof is injective but gis not injective.


Let f(x) = x2 + x + 1 and g(x) = sin x. Show that fog ≠ gof.


Let A = R - {3} and B = R - {1}. Consider the function f : A → B defined by f(x) = `(x-2)/(x-3).`Show that f is one-one and onto and hence find f-1.

                    [CBSE 2012, 2014]


Which one of the following graphs represents a function?


If A = {1, 2, 3} and B = {ab}, write the total number of functions from A to B.


If f : R → Rg : R → are given by f(x) = (x + 1)2 and g(x) = x2 + 1, then write the value of fog (−3).


Let \[f : \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right] \to\] A be defined by f(x) = sin x. If f is a bijection, write set A.


Let

\[A = \left\{ x : - 1 \leq x \leq 1 \right\} \text{and} f : A \to \text{A such that f}\left( x \right) = x|x|\]

 


If the function\[f : R \to \text{A given by} f\left( x \right) = \frac{x^2}{x^2 + 1}\] is a surjection, then A =

 

 


Let

\[f : R - \left\{ n \right\} \to R\]

\[f\left( x \right) = \frac{x - m}{x - n}, \text{where} \ m \neq n .\] Then,
 

\[f : Z \to Z\]  be given by

 ` f (x) = {(x/2, ", if  x is even" ) ,(0 , ", if  x  is  odd "):}`

Then,  f is


If \[g \left( f \left( x \right) \right) = \left| \sin x \right| \text{and} f \left( g \left( x \right) \right) = \left( \sin \sqrt{x} \right)^2 , \text{then}\]

 


 Let
\[g\left( x \right) = 1 + x - \left[ x \right] \text{and} f\left( x \right) = \begin{cases}- 1, & x < 0 \\ 0, & x = 0, \\ 1, & x > 0\end{cases}\] where [x] denotes the greatest integer less than or equal to x. Then for all \[x, f \left( g \left( x \right) \right)\] is equal to


Let  \[f\left( x \right) = \frac{\alpha x}{x + 1}, x \neq - 1\] Then, for what value of α is \[f \left( f\left( x \right) \right) = x?\]

 


If \[f : R \to R\] is given by \[f\left( x \right) = x^3 + 3, \text{then} f^{- 1} \left( x \right)\] is equal to

 


Let \[f\left(x\right) = x^3\] be a function with domain {0, 1, 2, 3}. Then domain of \[f^{-1}\] is ______.


If A = {a, b, c, d} and f = {a, b), (b, d), (c, a), (d, c)}, show that f is one-one from A onto A. Find f–1


Let f: R → R be the function defined by f(x) = 2x – 3 ∀ x ∈ R. write f–1 


If f: R → R is defined by f(x) = x2 – 3x + 2, write f(f (x))


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

f(x) = `x/2`


Let f: `[2, oo)` → R be the function defined by f(x) = x2 – 4x + 5, then the range of f is ______.


The smallest integer function f(x) = [x] is ____________.


Let f : R → R be a function defined by f(x) `= ("e"^abs"x" - "e"^-"x")/("e"^"x" + "e"^-"x")` then f(x) is


Let R be a relation on the set L of lines defined by l1 R l2 if l1 is perpendicular to l2, then relation R is ____________.


Prove that the function f is surjective, where f: N → N such that `f(n) = {{:((n + 1)/2",", if "n is odd"),(n/2",", if  "n is even"):}` Is the function injective? Justify your answer.


The graph of the function y = f(x) is symmetrical about the line x = 2, then ______.


Let a function `f: N rightarrow N` be defined by

f(n) = `{:[(2n",", n = 2","  4","  6","  8","......),(n - 1",", n = 3","  7","  11","  15","......),((n + 1)/2",", n = 1","  5","  9","  13","......):}`

then f is ______.


Let S = {1, 2, 3, 4, 5, 6, 7}. Then the number of possible functions f: S `rightarrow` S such that f(m.n) = f(m).f(n) for every m, n ∈ S and m.n ∈ S is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×