Advertisements
Advertisements
प्रश्न
Show that the function f : R − {3} → R − {2} given by f(x) = `(x-2)/(x-3)` is a bijection.
उत्तर
f : R − {3} → R − {2} given by
`f (x) = (x-2)/(x-3)`
Injectivity:
Let x and y be any two elements in the domain (R − {3}), such that f(x) = f(y).
f(x) = f(y)
⇒ `(x-2)/(x-3) = (y-2)/(y-3)`
⇒ ( x-2 ) (y - 3) = ( y-2 ) ( x-3 )
⇒ xy - 3x - 2y + = xy = 3y - 2x + 6
⇒ x = y
So, f is one-one.
Surjectivity :
Let y be any element in the co-domain (R − {2}), such that f(x) = y for some element xin R − {3} (domain).
f(x) = y
⇒ `(x-2)/(x-3) =y`
⇒ x - 2 = xy - 3y
⇒ xy - x = 3y - 2
⇒ x ( y-1 ) = 3y - 2
⇒ x = `(3y - 2)/(y-1),`which is in R -{3}
So, for every element in the co-domain, there exists some pre-image in the domain. ⇒ f is onto.
Since, f is both one-one and onto, it is a bijection.
APPEARS IN
संबंधित प्रश्न
Show that the modulus function f: R → R given by f(x) = |x| is neither one-one nor onto, where |x| is x, if x is positive or 0 and |x| is − x if x is negative.
Let f: R → R be defined as f(x) = 3x. Choose the correct answer.
Find the number of all onto functions from the set {1, 2, 3, …, n} to itself.
Classify the following function as injection, surjection or bijection :
f : Z → Z, defined by f(x) = x − 5
Classify the following function as injection, surjection or bijection :
f : R → R, defined by f(x) = x3 − x
Let R+ be the set of all non-negative real numbers. If f : R+ → R+ and g : R+ → R+ are defined as `f(x)=x^2` and `g(x)=+sqrtx` , find fog and gof. Are they equal functions ?
Find fog and gof if : f(x) = c, c ∈ R, g(x) = sin `x^2`
Let f be a real function given by f (x)=`sqrt (x-2)`
Find each of the following:
(i) fof
(ii) fofof
(iii) (fofof) (38)
(iv) f2
Also, show that fof ≠ `f^2` .
Let
f (x) =`{ (1 + x, 0≤ x ≤ 2) , (3 -x , 2 < x ≤ 3):}`
Find fof.
A function f : R → R is defined as f(x) = x3 + 4. Is it a bijection or not? In case it is a bijection, find f−1 (3).
If A = {1, 2, 3, 4} and B = {a, b, c, d}, define any four bijections from A to B. Also give their inverse functions.
If f : C → C is defined by f(x) = x2, write f−1 (−4). Here, C denotes the set of all complex numbers.
If f : C → C is defined by f(x) = (x − 2)3, write f−1 (−1).
Write whether f : R → R, given by `f(x) = x + sqrtx^2` is one-one, many-one, onto or into.
If f(x) = x + 7 and g(x) = x − 7, x ∈ R, write fog (7).
If f : R → R be defined by f(x) = (3 − x3)1/3, then find fof (x).
If the mapping f : {1, 3, 4} → {1, 2, 5} and g : {1, 2, 5} → {1, 3}, given by f = {(1, 2), (3, 5), (4, 1)} and g = {(2, 3), (5, 1), (1, 3)}, then write fog. [NCERT EXEMPLAR]
\[f : A \to \text{B given by } 3^{ f\left( x \right)} + 2^{- x} = 4\] is a bijection, then
Let the function
\[f : R - \left\{ - b \right\} \to R - \left\{ 1 \right\}\]
\[f\left( x \right) = \frac{x + a}{x + b}, a \neq b .\text{Then},\]
Let
f : R → R be given by
\[f\left( x \right) = \left[ x^2 \right] + \left[ x + 1 \right] - 3\]
where [x] denotes the greatest integer less than or equal to x. Then, f(x) is
(d) one-one and onto
The range of the function
\[f\left( x \right) =^{7 - x} P_{x - 3}\]
A function f from the set of natural numbers to integers defined by
`{([n-1]/2," when n is odd" is ),(-n/2,when n is even ) :}`
The function
\[f : R \to R\] defined by\[f\left( x \right) = \left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)\]
(a) one-one but not onto
(b) onto but not one-one
(c) both one and onto
(d) neither one-one nor onto
Let \[f\left( x \right) = \frac{1}{1 - x} . \text{Then}, \left\{ f o \left( fof \right) \right\} \left( x \right)\]
Let f, g: R → R be two functions defined as f(x) = |x| + x and g(x) = x – x ∀ x ∈ R. Then, find f o g and g o f
Let f: R → R be the function defined by f(x) = 2x – 3 ∀ x ∈ R. write f–1
Let f: R → R be the functions defined by f(x) = x3 + 5. Then f–1(x) is ______.
Let f : R `->` R be a function defined by f(x) = x3 + 4, then f is ______.
Let f : R → R, g : R → R be two functions such that f(x) = 2x – 3, g(x) = x3 + 5. The function (fog)-1 (x) is equal to ____________.
Students of Grade 9, planned to plant saplings along straight lines, parallel to each other to one side of the playground ensuring that they had enough play area. Let us assume that they planted one of the rows of the saplings along the line y = x − 4. Let L be the set of all lines which are parallel on the ground and R be a relation on L.
Answer the following using the above information.
- The function f: R → R defined by f(x) = x − 4 is ____________.
Let n(A) = 4 and n(B) = 6, Then the number of one – one functions from 'A' to 'B' is:
Let the function f: R → R be defined by f(x) = 4x – 1, ∀ x ∈ R then 'f' is
Function f: R → R, defined by f(x) = `x/(x^2 + 1)` ∀ x ∈ R is not
Prove that the function f is surjective, where f: N → N such that `f(n) = {{:((n + 1)/2",", if "n is odd"),(n/2",", if "n is even"):}` Is the function injective? Justify your answer.
If f: R→R is a function defined by f(x) = `[x - 1]cos((2x - 1)/2)π`, where [ ] denotes the greatest integer function, then f is ______.
Let f: R→R be a continuous function such that f(x) + f(x + 1) = 2, for all x ∈ R. If I1 = `int_0^8f(x)dx` and I2 = `int_(-1)^3f(x)dx`, then the value of I1 + 2I2 is equal to ______.
Let f(n) = `[1/3 + (3n)/100]n`, where [n] denotes the greatest integer less than or equal to n. Then `sum_(n = 1)^56f(n)` is equal to ______.
Let S = {1, 2, 3, 4, 5, 6, 7}. Then the number of possible functions f: S `rightarrow` S such that f(m.n) = f(m).f(n) for every m, n ∈ S and m.n ∈ S is equal to ______.
Write the domain and range (principle value branch) of the following functions:
f(x) = tan–1 x.