मराठी

Let \[F\Left( X \Right) = \Frac{\Alpha X}{X + 1}, X \Neq - 1\] Then, for What Value of α is \[F \Left( F\Left( X \Right) \Right) = X?\] (A) \[\Sqrt{2}\] (B) \[- \Sqrt{2}\] (C) 1 (D) −1 - Mathematics

Advertisements
Advertisements

प्रश्न

Let  \[f\left( x \right) = \frac{\alpha x}{x + 1}, x \neq - 1\] Then, for what value of α is \[f \left( f\left( x \right) \right) = x?\]

 

पर्याय

  • \[\sqrt{2}\]

  • \[- \sqrt{2}\]

  • 1

  • -1

MCQ

उत्तर

(d) −1

\[f\left( f\left( x \right) \right) = x\] 
\[ \Rightarrow f\left( \frac{\alpha x}{x + 1} \right) = x\] 
\[ \Rightarrow \frac{\alpha\left( \frac{\alpha x}{x + 1} \right)}{\left( \frac{\alpha x}{x + 1} \right) + 1} = x\] 
\[ \Rightarrow \frac{\alpha^2 x}{\alpha x + x + 1} = x\] 
\[ \Rightarrow \alpha^2 x = \alpha x^2 + x^2 + x\] 
\[ \Rightarrow \alpha^2 x - \alpha x^2 - x^2 - x = 0\] 
\[ \Rightarrow \alpha^2 x - \alpha x^2 - \left( x^2 + x \right) = 0\] 
\[\text{Solving } \text{for } \text{ the } \alpha \text{ we get}, \] 
\[\alpha = \frac{- \left( - x^2 \right) \pm \sqrt{\left( - x^2 \right)^2 - 4 \times x \times \left[ - \left( x^2 + x \right) \right]}}{2x}\] 
\[ = \frac{x^2 \pm \sqrt{x^4 + 4 x^3 + 4 x^2}}{2x}\] 
\[ = x + 1, - 1\] 
\[\text{Here, - 1 is independent of } x, \] 
\[ \therefore for, \alpha = - 1, f\left( f\left( x \right) \right) = x\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Functions - Exercise 2.6 [पृष्ठ ७८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 2 Functions
Exercise 2.6 | Q 40 | पृष्ठ ७८

व्हिडिओ ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्‍न

Show that the function f in `A=R-{2/3} ` defined as `f(x)=(4x+3)/(6x-4)` is one-one and onto hence find f-1


Show that the Signum Function f: R → R, given by `f(x) = {(1, if x > 0), (0, if x  = 0), (-1, if x < 0):}`  is neither one-one nor onto


Let f: R → R be defined as f(x) = x4. Choose the correct answer.


Prove that the function f : N → N, defined by f(x) = x2 + x + 1, is one-one but not onto


Classify the following function as injection, surjection or bijection :

 f : R → R, defined by f(x) = sinx


Let A = [-1, 1]. Then, discuss whether the following function from A to itself is one-one, onto or bijective : g(x) = |x|  


Set of ordered pair of a function ? If so, examine whether the mapping is injective or surjective :{(ab) : a is a person, b is an ancestor of a


If A = {1, 2, 3}, show that a one-one function f : A → A must be onto.


Find gof and fog when f : R → R and g : R → R is  defined by  f(x) = 8x3 and  g(x) = x1/3.


Find  fog (2) and gof (1) when : f : R → R ; f(x) = x2 + 8 and g : R → Rg(x) = 3x3 + 1.


Let f : R → R and g : R → R be defined by f(x) = + 1 and (x) = x − 1. Show that fog = gof = IR.


Find fog and gof  if : f(x)= x + 1, g (x) = 2x + 3 .


Let f(x) = x2 + x + 1 and g(x) = sin x. Show that fog ≠ gof.


Let

f (x) =`{ (1 + x, 0≤ x ≤ 2) , (3 -x , 2 < x ≤ 3):}`

Find fof.


 If f, g : R → R be two functions defined as f(x) = |x| + x and g(x) = |x|- x, ∀x∈R" .Then find fog and gof. Hence find fog(–3), fog(5) and gof (–2).


State with reason whether the following functions have inverse:

h : {2, 3, 4, 5} → {7, 9, 11, 13} with h = {(2, 7), (3, 9), (4, 11), (5, 13)}


Consider f : R+ → [−5, ∞) given by f(x) = 9x2 + 6x − 5. Show that f is invertible with `f^-1 (x) = (sqrt (x +6)-1)/3 .`


If f : R → (−1, 1) defined by `f (x) = (10^x- 10^-x)/(10^x + 10 ^-x)` is invertible, find f−1.


If f : A → Ag : A → A are two bijections, then prove that fog is a surjection ?


Which one of the following graphs represents a function?


If f : C → C is defined by f(x) = x2, write f−1 (−4). Here, C denotes the set of all complex numbers.


Let f : R → R be defined as  `f (x) = (2x - 3)/4.` write fo f-1 (1) .


Write the domain of the real function f defined by f(x) = `sqrt (25 -x^2)`   [NCERT EXEMPLAR]


If  \[f\left( x \right) = \sin^2 x\] and the composite function   \[g\left( f\left( x \right) \right) = \left| \sin x \right|\] then g(x) is equal to


Let \[f\left(x\right) = x^3\] be a function with domain {0, 1, 2, 3}. Then domain of \[f^{-1}\] is ______.


Mark the correct alternative in the following question:

If the set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is


Let N be the set of natural numbers and the function f: N → N be defined by f(n) = 2n + 3 ∀ n ∈ N. Then f is ______.


Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not

g = {(1, 4), (2, 4), (3, 4)}


Let A = R – {3}, B = R – {1}. Let f: A → B be defined by f(x) = `(x - 2)/(x - 3)` ∀ x ∈ A . Then show that f is bijective


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

f(x) = `x/2`


The function f : R → R given by f(x) = x3 – 1 is ____________.


Given a function If as f(x) = 5x + 4, x ∈ R. If g : R → R is inverse of function ‘f then


Let f(1, 3) `rightarrow` R be a function defined by f(x) = `(x[x])/(1 + x^2)`, where [x] denotes the greatest integer ≤ x, Then the range of f is ______.


Let f(n) = `[1/3 + (3n)/100]n`, where [n] denotes the greatest integer less than or equal to n. Then `sum_(n = 1)^56f(n)` is equal to ______.


If A = {x ∈ R: |x – 2| > 1}, B = `{x ∈ R : sqrt(x^2 - 3) > 1}`, C = {x ∈ R : |x – 4| ≥ 2} and Z is the set of all integers, then the number of subsets of the set (A ∩ B ∩ C) C ∩ Z is ______.


Let a function `f: N rightarrow N` be defined by

f(n) = `{:[(2n",", n = 2","  4","  6","  8","......),(n - 1",", n = 3","  7","  11","  15","......),((n + 1)/2",", n = 1","  5","  9","  13","......):}`

then f is ______.


The function f(x) = [x], where [x] denotes the greatest integer less than or equal to x; is continuous at ______.


Let f(x) be a polynomial function of degree 6 such that `d/dx (f(x))` = (x – 1)3 (x – 3)2, then

Assertion (A): f(x) has a minimum at x = 1.

Reason (R): When `d/dx (f(x)) < 0, ∀  x ∈ (a - h, a)` and `d/dx (f(x)) > 0, ∀  x ∈ (a, a + h)`; where 'h' is an infinitesimally small positive quantity, then f(x) has a minimum at x = a, provided f(x) is continuous at x = a.


The trigonometric equation tan–1x = 3tan–1 a has solution for ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×