मराठी

Let F : R → R and G : R → R Be Defined by F(X) = X + 1 and G(X) = X − 1. Show that Fog = Gof = Ir. - Mathematics

Advertisements
Advertisements

प्रश्न

Let f : R → R and g : R → R be defined by f(x) = + 1 and (x) = x − 1. Show that fog = gof = IR.

उत्तर

Given,  f : R → R and g : R → R

⇒ fog :  R → R and gof R → R (Also, we know that IR : R → R)

So, the domains of all fog, gof and IR are the same.

(fog) (xf (g (x)f (x1x1+1IR (x)      ... (1)

(gof) (xg (f (x)g (x+1)x+1x=IR (x)        ... (2)

From (1) and (2),

(fog) (x(gof) (xIR (x), ∈ R

Hence, fogoIR

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Functions - Exercise 2.2 [पृष्ठ ४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 2 Functions
Exercise 2.2 | Q 8 | पृष्ठ ४६

व्हिडिओ ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्‍न

Let f: R → R be defined as f(x) = x4. Choose the correct answer.


Show that the function f: R → R given by f(x) = x3 is injective.


Which of the following functions from A to B are one-one and onto?
 f1 = {(1, 3), (2, 5), (3, 7)} ; A = {1, 2, 3}, B = {3, 5, 7}


Which of the following functions from A to B are one-one and onto?

 f2 = {(2, a), (3, b), (4, c)} ; A = {2, 3, 4}, B = {abc}


Find  fog (2) and gof (1) when : f : R → R ; f(x) = x2 + 8 and g : R → Rg(x) = 3x3 + 1.


Verify associativity for the following three mappings : f : N → Z0 (the set of non-zero integers), g : Z0 → Q and h : Q → R given by f(x) = 2xg(x) = 1/x and h(x) = ex.


Find fog and gof  if : f(x)= x + 1, g (x) = 2x + 3 .


Consider the function f : R→  [-9 , ∞ ]given by f(x) = 5x2 + 6x - 9. Prove that f is invertible with -1 (y) = `(sqrt(54 + 5y) -3)/5`             [CBSE 2015]


If f : A → Ag : A → A are two bijections, then prove that fog is an injection ?


If f : R → R defined by f(x) = 3x − 4 is invertible, then write f−1 (x).


Let A = {1, 2, 3, 4} and B = {ab} be two sets. Write the total number of onto functions from A to B.


The range of the function

\[f\left( x \right) =^{7 - x} P_{x - 3}\]

 


The function

\[f : R \to R\] defined by\[f\left( x \right) = \left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)\]

(a) one-one but not onto
(b) onto but not one-one
(c) both one and onto
(d) neither one-one nor onto


\[f : Z \to Z\]  be given by

 ` f (x) = {(x/2, ", if  x is even" ) ,(0 , ", if  x  is  odd "):}`

Then,  f is


If the function

\[f : R \to R\]  be such that

\[f\left( x \right) = x - \left[ x \right]\] where [x] denotes the greatest integer less than or equal to x, then \[f^{- 1} \left( x \right)\]

 


Let [x] denote the greatest integer less than or equal to x. If \[f\left( x \right) = \sin^{- 1} x, g\left( x \right) = \left[ x^2 \right]\text{  and } h\left( x \right) = 2x, \frac{1}{2} \leq x \leq \frac{1}{\sqrt{2}}\]

 


Mark the correct alternative in the following question:
Let f : R→ R be defined as, f(x) =  \[\begin{cases}2x, if x > 3 \\ x^2 , if 1 < x \leq 3 \\ 3x, if x \leq 1\end{cases}\] 

Then, find f( \[-\]1) + f(2) + f(4)

 


If f(x) = `(x+3)/(4x−5) , "g"(x) = (3+5x)/(4x−1)` then verify that `("fog") (x)` = x.


Let A be a finite set. Then, each injective function from A into itself is not surjective.


Let D be the domain of the real valued function f defined by f(x) = `sqrt(25 - x^2)`. Then, write D


Let f: R → R be the function defined by f(x) = 2x – 3 ∀ x ∈ R. write f–1 


Let C be the set of complex numbers. Prove that the mapping f: C → R given by f(z) = |z|, ∀ z ∈ C, is neither one-one nor onto.


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

f(x) = `x/2`


Let A = {1, 2, 3, ...n} and B = {a, b}. Then the number of surjections from A into B is ______.


Let f: R → R be defined by f(x) = `1/x` ∀ x ∈ R. Then f is ______.


The function f : A → B defined by f(x) = 4x + 7, x ∈ R is ____________.


The function f : R → R defined by f(x) = 3 – 4x is ____________.


Let f : R → R be a function defined by f(x) `= ("e"^abs"x" - "e"^-"x")/("e"^"x" + "e"^-"x")` then f(x) is


An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.

Ravi decides to explore these sets for various types of relations and functions.

  • Ravi wants to know among those relations, how many functions can be formed from B to G?

If `f : R -> R^+  U {0}` be defined by `f(x) = x^2, x ∈ R`. The mapping is


Let x is a real number such that are functions involved are well defined then the value of `lim_(t→0)[max{(sin^-1  x/3 + cos^-1  x/3)^2, min(x^2 + 4x + 7)}]((sin^-1t)/t)` where [.] is greatest integer function and all other brackets are usual brackets.


Let f(n) = `[1/3 + (3n)/100]n`, where [n] denotes the greatest integer less than or equal to n. Then `sum_(n = 1)^56f(n)` is equal to ______.


The graph of the function y = f(x) is symmetrical about the line x = 2, then ______.


A function f : [– 4, 4] `rightarrow` [0, 4] is given by f(x) = `sqrt(16 - x^2)`. Show that f is an onto function but not a one-one function. Further, find all possible values of 'a' for which f(a) = `sqrt(7)`.


The function f(x) = [x], where [x] denotes the greatest integer less than or equal to x; is continuous at ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×