Advertisements
Advertisements
प्रश्न
A function f : [– 4, 4] `rightarrow` [0, 4] is given by f(x) = `sqrt(16 - x^2)`. Show that f is an onto function but not a one-one function. Further, find all possible values of 'a' for which f(a) = `sqrt(7)`.
उत्तर
We have, f : [– 4, 4] `rightarrow` [0, 4] defined as f(x) = `sqrt(16 - x^2)`
(i) One-One
f(x1) = f(x2)
`\implies sqrt(16 - x_1^2) = sqrt(16 - x_2^2)`
`\implies 16 - x_1^2 = 16 - x_2^2`
`\implies x_1^2 = x_2^2`
`\implies x_1^2 - x_2^2` = 0
`\implies` (x1 + x2) (x1 – x2) = 0
Here, x1 + x2 = 0 is also possible.
As if x1 = 4 and x2 = – 4.
Then, x1 + x2 = 0 is also possible.
∴ x1 = – x2
But for one-one,
x1 = – x2
so, f(x) is not one-one.
(ii) Onto
Let, y = `sqrt(16 - x^2)`
`\implies` y2 = 16 – x2
`\implies` x2 = 16 – y2
`\implies` x = `sqrt(16 - y^2) ∈ [0, 4]`
So, f(x) is onto.
For f(a) = `sqrt(7)`, we have
f(a) = `sqrt(16 - a^2)`
`\implies sqrt(7) = sqrt(16 - a^2)`
On equating both sides
`\implies` 7 = 16 – a2
`\implies` a2 =16 – 7
`\implies` a2 = 9
`\implies` a = ± 3
Hence, possible values of a are 3 and – 3.
संबंधित प्रश्न
Show that the function f: R* → R* defined by `f(x) = 1/x` is one-one and onto, where R* is the set of all non-zero real numbers. Is the result true if the domain R* is replaced by N, with co-domain being same as R?
Give an example of a function which is one-one but not onto ?
Classify the following function as injection, surjection or bijection :
f : R → R, defined by f(x) = sin2x + cos2x
Classify the following function as injection, surjection or bijection :
f : R → R, defined by f(x) = 3 − 4x
If A = {1, 2, 3}, show that a onto function f : A → A must be one-one.
Give examples of two one-one functions f1 and f2 from R to R, such that f1 + f2 : R → R. defined by (f1 + f2) (x) = f1 (x) + f2 (x) is not one-one.
Find fog and gof if : f (x) = ex g(x) = loge x .
State with reason whether the following functions have inverse:
h : {2, 3, 4, 5} → {7, 9, 11, 13} with h = {(2, 7), (3, 9), (4, 11), (5, 13)}
Consider the function f : R+ → [-9 , ∞ ]given by f(x) = 5x2 + 6x - 9. Prove that f is invertible with f -1 (y) = `(sqrt(54 + 5y) -3)/5` [CBSE 2015]
If A = {1, 2, 3, 4} and B = {a, b, c, d}, define any four bijections from A to B. Also give their inverse functions.
If f : C → C is defined by f(x) = (x − 2)3, write f−1 (−1).
If f : R → R is defined by f(x) = 3x + 2, find f (f (x)).
Let A = {a, b, c, d} and f : A → A be given by f = {( a,b ),( b , d ),( c , a ) , ( d , c )} write `f^-1`. [NCERT EXEMPLAR]
Let
Let
\[A = \left\{ x \in R : x \geq 1 \right\}\] The inverse of the function,
\[f : A \to A\] given by
\[f\left( x \right) = 2^{x \left( x - 1 \right)} , is\]
Let
\[f : [2, \infty ) \to X\] be defined by
\[f\left( x \right) = 4x - x^2\] Then, f is invertible if X =
If \[f : R \to \left( - 1, 1 \right)\] is defined by
\[f\left( x \right) = \frac{- x|x|}{1 + x^2}, \text{ then } f^{- 1} \left( x \right)\] equals
If \[g\left( x \right) = x^2 + x - 2\text{ and} \frac{1}{2} gof\left( x \right) = 2 x^2 - 5x + 2\] is equal to
Let f: R → R be the function defined by f(x) = 2x – 3 ∀ x ∈ R. write f–1
If f: R → R is defined by f(x) = x2 – 3x + 2, write f(f (x))
Are the following set of ordered pairs functions? If so, examine whether the mapping is injective or surjective.
{(a, b): a is a person, b is an ancestor of a}
Let f: R – `{3/5}` → R be defined by f(x) = `(3x + 2)/(5x - 3)`. Then ______.
Let f: R → R be given by f(x) = tan x. Then f–1(1) is ______.
The number of bijective functions from set A to itself when A contains 106 elements is ____________.
A general election of Lok Sabha is a gigantic exercise. About 911 million people were eligible to vote and voter turnout was about 67%, the highest ever
Let I be the set of all citizens of India who were eligible to exercise their voting right in the general election held in 2019. A relation ‘R’ is defined on I as follows:
R = {(V1, V2) ∶ V1, V2 ∈ I and both use their voting right in the general election - 2019}
- Mr. ’X’ and his wife ‘W’ both exercised their voting right in the general election-2019, Which of the following is true?
Let f: R→R be defined as f(x) = 2x – 1 and g: R – {1}→R be defined as g(x) = `(x - 1/2)/(x - 1)`. Then the composition function f (g(x)) is ______.
`x^(log_5x) > 5` implies ______.
Let S = {1, 2, 3, 4, 5, 6, 7}. Then the number of possible functions f: S `rightarrow` S such that f(m.n) = f(m).f(n) for every m, n ∈ S and m.n ∈ S is equal to ______.
Let A = R – {2} and B = R – {1}. If f: A `→` B is a function defined by f(x) = `(x - 1)/(x - 2)` then show that f is a one-one and an onto function.