मराठी

Classify the Following Functions as Injection, Surjection Or Bijection : F : R → R, Defined By F(X) = 3 − 4x - Mathematics

Advertisements
Advertisements

प्रश्न

Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = 3 − 4x

बेरीज

उत्तर

f : R → R, defined by f(x) = 3 − 4x

Injection test:
Let x and y be any two elements in the domain (R), such that f(x) = f(y).

f(x) = f(y)

3−4x = 3−4y

−4x = −4y

x = y

So, f is an injection .
Surjection test:

Let y be any element in the co-domain (R), such that f(x) = y for some element x in R (domain).

f(x) = y

3 − 4x = y

4x = 3−y

`x = (3-y)/4`∈  R

So, f is a surjection and f is a bijection.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Functions - Exercise 2.1 [पृष्ठ ३१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 2 Functions
Exercise 2.1 | Q 5.15 | पृष्ठ ३१

व्हिडिओ ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्‍न

Let A = R − {3} and B = R − {1}. Consider the function f: A → B defined by `f(x) = ((x- 2)/(x -3))`. Is f one-one and onto? Justify your answer.


Let fR → be defined as f(x) = 10x + 7. Find the function gR → R such that g o f = f o = 1R.


Find the number of all onto functions from the set {1, 2, 3, …, n} to itself.


Give an example of a function which is neither one-one nor onto ?


Classify the following function as injection, surjection or bijection :

 f : R → R, defined by f(x) = x3 − x


Let A = [-1, 1]. Then, discuss whether the following functions from A to itself is one-one, onto or bijective : h(x) = x2 


Let R+ be the set of all non-negative real numbers. If f : R+ → R+ and g : R+ → R+ are defined as `f(x)=x^2` and `g(x)=+sqrtx` , find fog and gof. Are they equal functions ?


If f : A → B and g : B → C are onto functions, show that gof is a onto function.


Find fog and gof  if : f (x) = x+1, g (x) = sin x .


Let f(x) = x2 + x + 1 and g(x) = sin x. Show that fog ≠ gof.


Show that the function f : Q → Q, defined by f(x) = 3x + 5, is invertible. Also, find f−1


Which one of the following graphs represents a function?


Let f : R → Rg : R → R be two functions defined by f(x) = x2 + x + 1 and g(x) = 1 − x2. Write fog (−2).


If f(x) = 4 −( x - 7)3 then write f-1 (x).


The function f : R → R defined by

`f (x) = 2^x + 2^(|x|)` is 

 


The function \[f : [0, \infty ) \to \text {R given by } f\left( x \right) = \frac{x}{x + 1} is\]

 

 


Which of the following functions form Z to itself are bijections?

 

 

 
 

If the function\[f : R \to \text{A given by} f\left( x \right) = \frac{x^2}{x^2 + 1}\] is a surjection, then A =

 

 


If \[g \left( f \left( x \right) \right) = \left| \sin x \right| \text{and} f \left( g \left( x \right) \right) = \left( \sin \sqrt{x} \right)^2 , \text{then}\]

 


Let

 \[A = \left\{ x \in R : x \geq 1 \right\}\] The inverse of the function, 

\[f : A \to A\] given by

\[f\left( x \right) = 2^{x \left( x - 1 \right)} , is\]

 


Let  \[f\left( x \right) = \frac{1}{1 - x} . \text{Then}, \left\{ f o \left( fof \right) \right\} \left( x \right)\]

 


Mark the correct alternative in the following question:
Let A = {1, 2, ... , n} and B = {a, b}. Then the number of subjections from A into B is


Which function is used to check whether a character is alphanumeric or not?


Show that the function f: R → R defined by f(x) = `x/(x^2 + 1)`, ∀ ∈ + R , is neither one-one nor onto


Let N be the set of natural numbers and the function f: N → N be defined by f(n) = 2n + 3 ∀ n ∈ N. Then f is ______.


Let A = R – {3}, B = R – {1}. Let f: A → B be defined by f(x) = `(x - 2)/(x - 3)` ∀ x ∈ A . Then show that f is bijective


Let A = {1, 2, 3, ...n} and B = {a, b}. Then the number of surjections from A into B is ______.


The function f : R → R defined by f(x) = 3 – 4x is ____________.


Let f : R `->` R be a function defined by f(x) = x3 + 4, then f is ______.


Let f : R → R, g : R → R be two functions such that f(x) = 2x – 3, g(x) = x3 + 5. The function (fog)-1 (x) is equal to ____________.


Given a function If as f(x) = 5x + 4, x ∈ R. If g : R → R is inverse of function ‘f then


An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.

Ravi decides to explore these sets for various types of relations and functions.

  • Ravi wants to know among those relations, how many functions can be formed from B to G?

If `f : R -> R^+  U {0}` be defined by `f(x) = x^2, x ∈ R`. The mapping is


A function f: x → y is said to be one – one (or injective) if:


Let n(A) = 4 and n(B) = 6, Then the number of one – one functions from 'A' to 'B' is:


If f: R→R is a function defined by f(x) = `[x - 1]cos((2x - 1)/2)π`, where [ ] denotes the greatest integer function, then f is ______.


Let [x] denote the greatest integer ≤ x, where x ∈ R. If the domain of the real valued function f(x) = `sqrt((|[x]| - 2)/(|[x]| - 3)` is (–∞, a) ∪ [b, c) ∪ [4, ∞), a < b < c, then the value of a + b + c is ______.


The solution set of the inequation log1/3(x2 + x + 1) + 1 > 0 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×