मराठी

Let N be the set of natural numbers and the function f: N → N be defined by f(n) = 2n + 3 ∀ n ∈ N. Then f is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

Let N be the set of natural numbers and the function f: N → N be defined by f(n) = 2n + 3 ∀ n ∈ N. Then f is ______.

पर्याय

  • Surjective

  • Injective

  • Bijective

  • None of these

MCQ
रिकाम्या जागा भरा

उत्तर

Let N be the set of natural numbers and the function f: N → N be defined by f(n) = 2n + 3 ∀ n ∈ N. Then f is injective.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Relations And Functions - Solved Examples [पृष्ठ ८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 1 Relations And Functions
Solved Examples | Q 19 | पृष्ठ ८

व्हिडिओ ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्‍न

Let A and B be sets. Show that f: A × B → B × A such that (a, b) = (b, a) is bijective function.


Let f: N → N be defined by f(n) = `{((n+1)/2, ",if n is odd"),(n/2,",n is even"):}` for all n ∈ N.

State whether the function f is bijective. Justify your answer.


Show that function f: R `rightarrow` {x ∈ R : −1 < x < 1} defined by f(x) = `x/(1 + |x|)`, x ∈ R is one-one and onto function.


Let fR → R be the Signum Function defined as

f(x) = `{(1,x>0), (0, x =0),(-1, x< 0):}`

and gR → be the Greatest Integer Function given by g(x) = [x], where [x] is greatest integer less than or equal to x. Then does fog and gof coincide in (0, 1]?


Which of the following functions from A to B are one-one and onto?

 f2 = {(2, a), (3, b), (4, c)} ; A = {2, 3, 4}, B = {abc}


Classify the following function as injection, surjection or bijection : f : N → N given by f(x) = x2


If A = {1, 2, 3}, show that a onto function f : A → A must be one-one.


Let f = {(3, 1), (9, 3), (12, 4)} and g = {(1, 3), (3, 3) (4, 9) (5, 9)}. Show that gof and fog are both defined. Also, find fog and gof.


Give examples of two functions f : N → N and g : N → N, such that gof is onto but f is not onto.


If f : Q → Qg : Q → Q are two functions defined by f(x) = 2 x and g(x) = x + 2, show that f and g are bijective maps. Verify that (gof)−1 = f−1 og −1.


 If f : R → R be defined by f(x) = x4, write f−1 (1).

Let A = {1, 2, 3, 4} and B = {ab} be two sets. Write the total number of onto functions from A to B.


If f : R → R is defined by f(x) = 3x + 2, find f (f (x)).


Write the domain of the real function f defined by f(x) = `sqrt (25 -x^2)`   [NCERT EXEMPLAR]


The function f : R → R defined by

`f (x) = 2^x + 2^(|x|)` is 

 


The  function f : [-1/2, 1/2, 1/2] → [-π /2,π/2], defined by f (x) = `sin^-1` (3x - `4x^3`), is

 


Let

\[f : R \to R\]  be a function defined by

\[f\left( x \right) = \frac{e^{|x|} - e^{- x}}{e^x + e^{- x}} . \text{Then},\]
 

The inverse of the function

\[f : R \to \left\{ x \in R : x < 1 \right\}\] given by

\[f\left( x \right) = \frac{e^x - e^{- x}}{e^x + e^{- x}}\] is 

 


Let

 \[A = \left\{ x \in R : x \geq 1 \right\}\] The inverse of the function, 

\[f : A \to A\] given by

\[f\left( x \right) = 2^{x \left( x - 1 \right)} , is\]

 


Let  \[f\left( x \right) = \frac{1}{1 - x} . \text{Then}, \left\{ f o \left( fof \right) \right\} \left( x \right)\]

 


If  \[f : R \to \left( - 1, 1 \right)\] is defined by

\[f\left( x \right) = \frac{- x|x|}{1 + x^2}, \text{ then } f^{- 1} \left( x \right)\] equals

 


Let the function f: R → R be defined by f(x) = 4x – 1, ∀ x ∈ R. Then, show that f is one-one.


The domain of the function f: R → R defined by f(x) = `sqrt(x^2 - 3x + 2)` is ______


Let A be a finite set. Then, each injective function from A into itself is not surjective.


Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not

h = {(1,4), (2, 5), (3, 5)}


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

g(x) = |x|


Using the definition, prove that the function f: A→ B is invertible if and only if f is both one-one and onto


If f: R → R given by f(x) =(3 − x3)1/3, find f0f(x)


Number of integral values of x satisfying the inequality `(3/4)^(6x + 10 - x^2) < 27/64` is ______.


Let f(x) be a polynomial of degree 3 such that f(k) = `-2/k` for k = 2, 3, 4, 5. Then the value of 52 – 10f(10) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×