Advertisements
Advertisements
प्रश्न
Show that function f: R `rightarrow` {x ∈ R : −1 < x < 1} defined by f(x) = `x/(1 + |x|)`, x ∈ R is one-one and onto function.
उत्तर
It is given that f: R `rightarrow` {x ∈ R: −1 < x < 1} is defined as f(x) =`x/(1+ |x|)`, x ∈ R.
Suppose f(x) = f(y), where x, y ∈ R.
`=> x/(1 +| x|) = y/(1 - |y|) `
=> 2xy = x - y
`=> x/(1 + x) = y/(1 - y) `
⇒ x + xy = y + xy
⇒ x = y
Since x is positive and y is negative:
x > y
⇒ x − y > 0
But, 2xy is negative.
Then, `2xy != x - y`.
Thus, the case of x being positive and y being negative can be ruled out.
Under a similar argument, x being negative and y being positive can also be ruled out
∴ x and y have to be either positive or negative.
When x and y are both positive, we have:
`=> f(x) = f(y)= x/(1 +| x|) = y/(1 - |y|) `
`f(x) = f(y) => x/(1+x) = y/(1+y)`
=> x + xy = y + xy
=> x = y
When x and y are both negative, we have:
`f(x) = f(y) => x/(1 -x) = y/(1- y) `
=> x - xy = y - yx
=> x = y
∴ f is one-one.
Now, let y ∈ R such that −1 < y < 1.
If x is negative, then there exists `x = y/(1 + y) in R` such that
`f(x) = f(y/(1+y)) `
`= ((y/(1+y)))/(1+ |y/(1 + y)|) `
`= (y/(1+y))/(1 + (-y)/(1+y)) `
`= y/(1 +y - y) `
= y
If x is positive, then there exists `x = y/(1 - y) in R` such that
`f(x) = f(y/(1-y)) = (y/(1-y))/(1 + |(y/(1-y))|)`
` = (y/(1-y))/(1+y/(1-y))`
` = y/(1 - y + y)`
= y
∴ f is onto.
Hence, f is one-one and onto.
संबंधित प्रश्न
Let S = {a, b, c} and T = {1, 2, 3}. Find F−1 of the following functions F from S to T, if it exists.
F = {(a, 2), (b, 1), (c, 1)}
Classify the following function as injection, surjection or bijection : f : Z → Z given by f(x) = x2
Let f : N → N be defined by
`f(n) = { (n+ 1, if n is odd),( n-1 , if n is even):}`
Show that f is a bijection.
[CBSE 2012, NCERT]
Find gof and fog when f : R → R and g : R → R is defined by f(x) = x2 + 2x − 3 and g(x) = 3x − 4 .
Let f = {(1, −1), (4, −2), (9, −3), (16, 4)} and g = {(−1, −2), (−2, −4), (−3, −6), (4, 8)}. Show that gof is defined while fog is not defined. Also, find gof.
Consider f : N → N, g : N → N and h : N → R defined as f(x) = 2x, g(y) = 3y + 4 and h(z) = sin z for all x, y, z ∈ N. Show that ho (gof) = (hog) of.
Find fog and gof if : f (x) = x2 g(x) = cos x .
Find fog and gof if : f (x) = |x|, g (x) = sin x .
Find fog and gof if : f(x)= x + 1, g (x) = 2x + 3 .
Let f(x) = x2 + x + 1 and g(x) = sin x. Show that fog ≠ gof.
A function f : R → R is defined as f(x) = x3 + 4. Is it a bijection or not? In case it is a bijection, find f−1 (3).
If f : R → (0, 2) defined by `f (x) =(e^x - e^(x))/(e^x +e^(-x))+1`is invertible , find f-1.
Let C denote the set of all complex numbers. A function f : C → C is defined by f(x) = x3. Write f−1(1).
Let f : R − {−1} → R − {1} be given by\[f\left( x \right) = \frac{x}{x + 1} . \text{Write } f^{- 1} \left( x \right)\]
Let f : R → R be defined as `f (x) = (2x - 3)/4.` write fo f-1 (1) .
Let A = {1, 2, 3, 4} and B = {a, b} be two sets. Write the total number of onto functions from A to B.
If f : R → R be defined by f(x) = (3 − x3)1/3, then find fof (x).
Which one the following relations on A = {1, 2, 3} is a function?
f = {(1, 3), (2, 3), (3, 2)}, g = {(1, 2), (1, 3), (3, 1)} [NCERT EXEMPLAR]
Let
\[A = \left\{ x \in R : - 1 \leq x \leq 1 \right\} = B\] Then, the mapping\[f : A \to \text{B given by} f\left( x \right) = x\left| x \right|\] is
Which of the following functions from
to itself are bijections?
Let
\[f : R - \left\{ n \right\} \to R\]
If \[g \left( f \left( x \right) \right) = \left| \sin x \right| \text{and} f \left( g \left( x \right) \right) = \left( \sin \sqrt{x} \right)^2 , \text{then}\]
Let
\[f : R \to R\] be given by \[f\left( x \right) = x^2 - 3\] Then, \[f^{- 1}\] is given by
Let f, g: R → R be two functions defined as f(x) = |x| + x and g(x) = x – x ∀ x ∈ R. Then, find f o g and g o f
Let f: R → R be defined by f(x) = x2 + 1. Then, pre-images of 17 and – 3, respectively, are ______.
The domain of the function f: R → R defined by f(x) = `sqrt(x^2 - 3x + 2)` is ______
Let f: R → R be the function defined by f(x) = 2x – 3 ∀ x ∈ R. write f–1
Which of the following functions from Z into Z are bijections?
Let f: R – `{3/5}` → R be defined by f(x) = `(3x + 2)/(5x - 3)`. Then ______.
The smallest integer function f(x) = [x] is ____________.
Let g(x) = x2 – 4x – 5, then ____________.
The function f : R → R given by f(x) = x3 – 1 is ____________.
Let R be a relation on the set L of lines defined by l1 R l2 if l1 is perpendicular to l2, then relation R is ____________.
Let f: R → R defined by f(x) = x4. Choose the correct answer
Function f: R → R, defined by f(x) = `x/(x^2 + 1)` ∀ x ∈ R is not
Prove that the function f is surjective, where f: N → N such that `f(n) = {{:((n + 1)/2",", if "n is odd"),(n/2",", if "n is even"):}` Is the function injective? Justify your answer.
The solution set of the inequation log1/3(x2 + x + 1) + 1 > 0 is ______.
`x^(log_5x) > 5` implies ______.
A function f : [– 4, 4] `rightarrow` [0, 4] is given by f(x) = `sqrt(16 - x^2)`. Show that f is an onto function but not a one-one function. Further, find all possible values of 'a' for which f(a) = `sqrt(7)`.