मराठी

Show that function f: R → {x ∈ R : −1 < x < 1} defined by f(x) = x1+|x|, x ∈ R is one-one and onto function. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that function f: R `rightarrow` {x ∈ R : −1 < x < 1} defined by f(x) = `x/(1 + |x|)`, x ∈ R is one-one and onto function.

बेरीज

उत्तर

It is given that f: R `rightarrow` {x ∈ R: −1 < x < 1} is defined as f(x) =`x/(1+ |x|)`, x ∈ R.

Suppose f(x) = f(y), where x, y ∈ R.

`=> x/(1 +| x|) = y/(1 - |y|) `

=> 2xy =  x - y

`=> x/(1 + x) = y/(1 - y) `

⇒ x + xy = y + xy

⇒ x = y

Since x is positive and y is negative:

x > y 

⇒ x − y > 0

But, 2xy is negative.

Then, `2xy != x - y`.

Thus, the case of x being positive and y being negative can be ruled out.

Under a similar argument, x being negative and y being positive can also be ruled out

∴ x and y have to be either positive or negative.

When x and y are both positive, we have:

`=> f(x) = f(y)= x/(1 +| x|) = y/(1 - |y|) `

`f(x) = f(y) => x/(1+x) = y/(1+y)`

=> x + xy = y + xy

=> x = y

When x and y are both negative, we have:

`f(x) = f(y) => x/(1 -x) = y/(1- y) `

=> x - xy = y - yx 

=> x = y

∴ f is one-one.

Now, let y ∈ R such that −1 < y < 1.

If x is negative, then there exists `x = y/(1 + y) in R` such that

`f(x) = f(y/(1+y)) `

`= ((y/(1+y)))/(1+ |y/(1 + y)|) `

`= (y/(1+y))/(1 + (-y)/(1+y)) `

`= y/(1 +y - y) `

= y

If x is positive, then there exists `x = y/(1 - y) in R` such that

`f(x) = f(y/(1-y)) = (y/(1-y))/(1 + |(y/(1-y))|)`

` = (y/(1-y))/(1+y/(1-y))`

` = y/(1 - y + y)`

= y

∴ f is onto.

Hence, f is one-one and onto.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Relations and Functions - Exercise 1.5 [पृष्ठ २९]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 1 Relations and Functions
Exercise 1.5 | Q 4 | पृष्ठ २९

व्हिडिओ ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्‍न

Let S = {abc} and T = {1, 2, 3}. Find F−1 of the following functions F from S to T, if it exists.

F = {(a, 2), (b, 1), (c, 1)}


Classify the following function as injection, surjection or bijection :  f : Z → Z given by f(x) = x2


Let f : N → N be defined by

`f(n) = { (n+ 1, if n  is  odd),( n-1 , if n  is  even):}`

Show that f is a bijection. 

                      [CBSE 2012, NCERT]


Find gof and fog when f : R → R and g : R → R is defined by  f(x) = x2 + 2x − 3 and  g(x) = 3x − 4 .


Let f = {(1, −1), (4, −2), (9, −3), (16, 4)} and g = {(−1, −2), (−2, −4), (−3, −6), (4, 8)}. Show that gof is defined while fog is not defined. Also, find gof.


Consider f : N → Ng : N → N and h : N → R defined as f(x) = 2xg(y) = 3y + 4 and h(z) = sin z for all xyz ∈ N. Show that ho (gof) = (hogof.


Find fog and gof  if : f (x) = x2 g(x) = cos x .


Find fog and gof  if : f (x) = |x|, g (x) = sin x .


Find fog and gof  if : f(x)= x + 1, g (x) = 2x + 3 .


Let f(x) = x2 + x + 1 and g(x) = sin x. Show that fog ≠ gof.


A function f : R → R is defined as f(x) = x3 + 4. Is it a bijection or not? In case it is a bijection, find f−1 (3).


If f : R → (0, 2) defined by `f (x) =(e^x - e^(x))/(e^x +e^(-x))+1`is invertible , find f-1.


Let C denote the set of all complex numbers. A function f : C → C is defined by f(x) = x3. Write f−1(1).


Let f : R − {−1} → R − {1} be given by\[f\left( x \right) = \frac{x}{x + 1} . \text{Write } f^{- 1} \left( x \right)\]


Let f : R → R be defined as  `f (x) = (2x - 3)/4.` write fo f-1 (1) .


Let A = {1, 2, 3, 4} and B = {ab} be two sets. Write the total number of onto functions from A to B.


If f : R → R be defined by f(x) = (3 − x3)1/3, then find fof (x).


Which one the following relations on A = {1, 2, 3} is a function?
f = {(1, 3), (2, 3), (3, 2)}, g = {(1, 2), (1, 3), (3, 1)}                                                                                                        [NCERT EXEMPLAR]


Let 

\[A = \left\{ x \in R : - 1 \leq x \leq 1 \right\} = B\] Then, the mapping\[f : A \to \text{B given by} f\left( x \right) = x\left| x \right|\] is 

 


Which of the following functions from

\[A = \left\{ x : - 1 \leq x \leq 1 \right\}\]

to itself are bijections?

 

 

 


Let

\[f : R - \left\{ n \right\} \to R\]

\[f\left( x \right) = \frac{x - m}{x - n}, \text{where} \ m \neq n .\] Then,
 

If \[g \left( f \left( x \right) \right) = \left| \sin x \right| \text{and} f \left( g \left( x \right) \right) = \left( \sin \sqrt{x} \right)^2 , \text{then}\]

 


Let 
\[f : R \to R\]  be given by \[f\left( x \right) = x^2 - 3\] Then, \[f^{- 1}\] is given by 

 


Let f, g: R → R be two functions defined as f(x) = |x| + x and g(x) = x – x ∀ x ∈ R. Then, find f o g and g o f


Let f: R → R be defined by f(x) = x2 + 1. Then, pre-images of 17 and – 3, respectively, are ______.


The domain of the function f: R → R defined by f(x) = `sqrt(x^2 - 3x + 2)` is ______


Let f: R → R be the function defined by f(x) = 2x – 3 ∀ x ∈ R. write f–1 


Which of the following functions from Z into Z are bijections?


Let f: R – `{3/5}` → R be defined by f(x) = `(3x + 2)/(5x - 3)`. Then ______.


The smallest integer function f(x) = [x] is ____________.


Let g(x) = x2 – 4x – 5, then ____________.


The function f : R → R given by f(x) = x3 – 1 is ____________.


Let R be a relation on the set L of lines defined by l1 R l2 if l1 is perpendicular to l2, then relation R is ____________.


Let f: R → R defined by f(x) = x4. Choose the correct answer


Function f: R → R, defined by f(x) = `x/(x^2 + 1)` ∀ x ∈ R is not


Prove that the function f is surjective, where f: N → N such that `f(n) = {{:((n + 1)/2",", if "n is odd"),(n/2",", if  "n is even"):}` Is the function injective? Justify your answer.


The solution set of the inequation log1/3(x2 + x + 1) + 1 > 0 is ______.


`x^(log_5x) > 5` implies ______.


A function f : [– 4, 4] `rightarrow` [0, 4] is given by f(x) = `sqrt(16 - x^2)`. Show that f is an onto function but not a one-one function. Further, find all possible values of 'a' for which f(a) = `sqrt(7)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×