मराठी

Let f: R → R be defined by f(x) = x2 + 1. Then, pre-images of 17 and – 3, respectively, are ______. - Mathematics

Advertisements
Advertisements

प्रश्न

Let f: R → R be defined by f(x) = x2 + 1. Then, pre-images of 17 and – 3, respectively, are ______.

पर्याय

  • φ, {4, – 4}

  • {3, – 3}, φ

  • {4, – 4}, φ

  • {4, – 4, {2, – 2}

MCQ
रिकाम्या जागा भरा

उत्तर

Let f: R → R be defined by f(x) = x2 + 1. Then, pre-images of 17 and – 3, respectively, are {4, – 4}, φ.

Explanation:

Since for f–1(17) = x

⇒ f(x) = 17 or x2 + 1 = 17

⇒ x = ± 4 or f–1(17)

= {4, – 4} and for f–1(–3) = x

⇒ f(x) = – 3

⇒ x2 + 1 = – 3

⇒ x2 = – 4 and hence f–1(– 3) = φ

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Relations And Functions - Solved Examples [पृष्ठ ९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 1 Relations And Functions
Solved Examples | Q 23 | पृष्ठ ९

व्हिडिओ ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्‍न

Let fR → be defined as f(x) = 10x + 7. Find the function gR → R such that g o f = f o = 1R.


Let A = [-1, 1]. Then, discuss whether the following function from A to itself is one-one, onto or bijective : g(x) = |x|  


Let A = [-1, 1]. Then, discuss whether the following functions from A to itself is one-one, onto or bijective : h(x) = x2 


Find gof and fog when f : R → R and g : R → R is defined by  f(x) = x2 + 2x − 3 and  g(x) = 3x − 4 .


Let f : R → R and g : R → R be defined by f(x) = + 1 and (x) = x − 1. Show that fog = gof = IR.


Find fog and gof  if : f (x) = x2 g(x) = cos x .


Let

f (x) =`{ (1 + x, 0≤ x ≤ 2) , (3 -x , 2 < x ≤ 3):}`

Find fof.


If A = {abc} and B = {−2, −1, 0, 1, 2}, write the total number of one-one functions from A to B.


If f : R → R is defined by f(x) = 10 x − 7, then write f−1 (x).


Write the domain of the real function

`f (x) = 1/(sqrt([x] - x)`.


Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. State whether f is one-one or not.


The function f : R → R defined by

`f (x) = 2^x + 2^(|x|)` is 

 


Let f be an injective map with domain {xyz} and range {1, 2, 3}, such that exactly one of the following statements is correct and the remaining are false.

\[f\left( x \right) = 1, f\left( y \right) \neq 1, f\left( z \right) \neq 2 .\]

The value of

\[f^{- 1} \left( 1 \right)\] is 

 


Let

\[f : R \to R\]
\[f\left( x \right) = \frac{x^2 - 8}{x^2 + 2}\]
Then,  f is


A function f from the set of natural numbers to the set of integers defined by

\[f\left( n \right)\begin{cases}\frac{n - 1}{2}, & \text{when n is odd} \\ - \frac{n}{2}, & \text{when n is even}\end{cases}\]

 


If \[f : R \to R is given by f\left( x \right) = 3x - 5, then f^{- 1} \left( x \right)\] 

 


Let  \[f\left( x \right) = \frac{1}{1 - x} . \text{Then}, \left\{ f o \left( fof \right) \right\} \left( x \right)\]

 


The distinct linear functions that map [−1, 1] onto [0, 2] are


Write about strlen() function.


Let f: R → R be defined by f(x) = `1/x` ∀ x ∈ R. Then f is ______.


Let f: R → R be the functions defined by f(x) = x3 + 5. Then f–1(x) is ______.


Let f : R → R be defind by f(x) = `1/"x"  AA  "x" in "R".` Then f is ____________.


Let f : R `->` R be a function defined by f(x) = x3 + 4, then f is ______.


Given a function If as f(x) = 5x + 4, x ∈ R. If g : R → R is inverse of function ‘f then


Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin’s sister Raji observed and noted the possible outcomes of the throw every time belongs to set {1,2,3,4,5,6}. Let A be the set of players while B be the set of all possible outcomes.

A = {S, D}, B = {1,2,3,4,5,6}

  • Raji wants to know the number of functions from A to B. How many number of functions are possible?

An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.

Ravi decides to explore these sets for various types of relations and functions.

  • Ravi wants to know among those relations, how many functions can be formed from B to G?

Let f: R → R defined by f(x) = x4. Choose the correct answer


Consider a function f: `[0, pi/2] ->` R, given by f(x) = sinx and `g[0, pi/2] ->` R given by g(x) = cosx then f and g are


The domain of the function `cos^-1((2sin^-1(1/(4x^2-1)))/π)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×