मराठी

Let F Be an Injective Map with Domain {X, Y, Z} and Range {1, 2, 3}, Such that Exactly One of the Following Statements is Correct and the Remaining Are False. - Mathematics

Advertisements
Advertisements

प्रश्न

Let f be an injective map with domain {xyz} and range {1, 2, 3}, such that exactly one of the following statements is correct and the remaining are false.

\[f\left( x \right) = 1, f\left( y \right) \neq 1, f\left( z \right) \neq 2 .\]

The value of

\[f^{- 1} \left( 1 \right)\] is 

 

पर्याय

  •  x

  • y

  • z

  • none of these

MCQ

उत्तर

\[\text{Case}-1: Letf\left( x \right) = 1 \text{ P be true}.\]
\[\text{Then,f } \left( y \right)\neq1 \text{ and f }\left( z \right) \neq 2\text{ are false}.\]
\[\text{So,f } (y) = 1 \text{ and } f \left( z \right) = 2\]
\[\Rightarrow f\left( x \right) = 1, f\left( y \right) = 1\]
\[ \Rightarrow \text{ x and y have the same images}.\]
\[\text{This contradicts the fact that fis one-one}.\]
\[\text{Case}-2: \text{Letf}\left( y \right) \neq1 \text{be true}.\]
\[\text{Then},f\left( x \right) = 1 \text{and}f\left( z \right) \neq 2 \text{ are false}.\]
\[So, f\left( x \right) \neq1 \text{and f}\left( z \right) = 2\]
\[\Rightarrow f\left( x \right) \neq 1, f\left( y \right) \neq 1 andf\left( z \right) = 2\]
\[\Rightarrow\text{There is no pre-image for 1}.\]
\[\text{This contradicts the fact that range is}\left\{ 1, 2, 3 \right\}.\]
\[\text{Case}-3: Letf\left( z \right) \neq 2\text{ be true}.\]
\[\text{Then},f\left( x \right) = 1\text{and}f\left( y \right) \neq 1 \text{are false}.\]
\[So, f\left( x \right) \neq1 \text {and} f\left( y \right) = 1\]
\[\Rightarrow f\left( x \right) = 2, f\left( y \right) = 1 \text{and }f\left( z \right) = 3\]
\[ \Rightarrow f \left( y \right) = 1\]
\[ \Rightarrow f^{- 1} \left( 1 \right) = y\]
So, the answer is (b).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Functions - Exercise 2.6 [पृष्ठ ७६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 2 Functions
Exercise 2.6 | Q 13 | पृष्ठ ७६

व्हिडिओ ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्‍न

Following the case, state whether the function is one-one, onto, or bijective. Justify your answer.

f: → R defined by f(x) = 1 + x2


Given examples of two functions fN → N and gN → N such that gof is onto but is not onto.

(Hint: Consider f(x) = x + 1 and `g(x) = {(x-1, ifx >1),(1, if x = 1):}`


If the function `f(x) = sqrt(2x - 3)` is invertible then find its inverse. Hence prove that `(fof^(-1))(x) = x`


Give an example of a function which is one-one but not onto ?


Let A = {−1, 0, 1} and f = {(xx2) : x ∈ A}. Show that f : A → A is neither one-one nor onto.


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = x3 + 1


If f : R → R be the function defined by f(x) = 4x3 + 7, show that f is a bijection.


Show that the logarithmic function  f : R0+ → R   given  by f (x)  loga x ,a> 0   is   a  bijection.


Find gof and fog when f : R → R and g : R → R is defined by f(x) = 2x + 3 and  g(x) = x2 + 5 .


Find gof and fog when f : R → R and g : R → R is defined by  f(x) = 2x + x2 and  g(x) = x3


 Find fog and gof  if  : f (x) = ex g(x) = loge x .


Find fog and gof  if : f (x) = x2 g(x) = cos x .


Find fog and gof  if : f(x) = sin−1 x, g(x) = x2


Find fog and gof  if : f(x) = `x^2` + 2 , g (x) = 1 − `1/ (1-x)`.


Let f(x) = x2 + x + 1 and g(x) = sin x. Show that fog ≠ gof.


If f(x) = 2x + 5 and g(x) = x2 + 1 be two real functions, then describe each of the following functions:
(1) fog
(2) gof
(3) fof
(4) f2
Also, show that fof ≠ f2


Find f −1 if it exists : f : A → B, where A = {0, −1, −3, 2}; B = {−9, −3, 0, 6} and f(x) = 3 x.


Let A = {1, 2, 3, 4}; B = {3, 5, 7, 9}; C = {7, 23, 47, 79} and f : A → Bg : B → C be defined as f(x) = 2x + 1 and g(x) = x2 − 2. Express (gof)−1 and f−1 og−1 as the sets of ordered pairs and verify that (gof)−1 = f−1 og−1.


If A = {abc} and B = {−2, −1, 0, 1, 2}, write the total number of one-one functions from A to B.


Let f  be a function from C (set of all complex numbers) to itself given by f(x) = x3. Write f−1 (−1).


Let \[f : \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \to R\]  be a function defined by f(x) = cos [x]. Write range (f).


Let f : R → R+ be defined by f(x) = axa > 0 and a ≠ 1. Write f−1 (x).


Write the domain of the real function

`f (x) = sqrtx - [x] .`


A function f from the set of natural numbers to the set of integers defined by

\[f\left( n \right)\begin{cases}\frac{n - 1}{2}, & \text{when n is odd} \\ - \frac{n}{2}, & \text{when n is even}\end{cases}\]

 


The distinct linear functions that map [−1, 1] onto [0, 2] are


Let f: R → R be the function defined by f(x) = 4x – 3 ∀ x ∈ R. Then write f–1 


Let N be the set of natural numbers and the function f: N → N be defined by f(n) = 2n + 3 ∀ n ∈ N. Then f is ______.


For sets A, B and C, let f: A → B, g: B → C be functions such that g o f is surjective. Then g is surjective.


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

g(x) = |x|


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

k(x) = x2 


Let f: `[2, oo)` → R be the function defined by f(x) = x2 – 4x + 5, then the range of f is ______.


Let f : R → R be defind by f(x) = `1/"x"  AA  "x" in "R".` Then f is ____________.


Let f : R → R, g : R → R be two functions such that f(x) = 2x – 3, g(x) = x3 + 5. The function (fog)-1 (x) is equal to ____________.


Range of `"f"("x") = sqrt((1 - "cos x") sqrt ((1 - "cos x")sqrt ((1 - "cos x")....infty))`


Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.

Answer the following questions using the above information.

  • Let f: R → R be defined by f(x) = x2 is:

Let n(A) = 4 and n(B) = 6, Then the number of one – one functions from 'A' to 'B' is:


If f: R→R is a function defined by f(x) = `[x - 1]cos((2x - 1)/2)π`, where [ ] denotes the greatest integer function, then f is ______.


Which one of the following graphs is a function of x?

Graph A Graph B

If f : R `rightarrow` R is defined by `f(x) = (2x - 7)/4`, show that f(x) is one-one and onto.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×