मराठी

Find Gof And Fog When F : R → R And G : R → R Is Defined By F(X) = 2x + X2 And G(X) = X3 - Mathematics

Advertisements
Advertisements

प्रश्न

Find gof and fog when f : R → R and g : R → R is defined by  f(x) = 2x + x2 and  g(x) = x3

उत्तर

Given, f : R → R and g : R → R
So, gof : R → R  and fog : R → R

f(x) = 2x + x2 and g(x) = x3

(gof) (x)

g (f (x))

g (2x+x2)

(2x+x2)3

(fog) (x)

f (g (x))

f (x3)

2 (x3)+(x3)2

=2x3+x6

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Functions - Exercise 2.2 [पृष्ठ ४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 2 Functions
Exercise 2.2 | Q 1.2 | पृष्ठ ४६

व्हिडिओ ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्‍न

Let f: R → R be defined as f(x) = x4. Choose the correct answer.


Let fR → R be the Signum Function defined as

f(x) = `{(1,x>0), (0, x =0),(-1, x< 0):}`

and gR → be the Greatest Integer Function given by g(x) = [x], where [x] is greatest integer less than or equal to x. Then does fog and gof coincide in (0, 1]?


If the function `f(x) = sqrt(2x - 3)` is invertible then find its inverse. Hence prove that `(fof^(-1))(x) = x`


Prove that the function f : N → N, defined by f(x) = x2 + x + 1, is one-one but not onto


Classify the following function as injection, surjection or bijection :

f : Z → Z, defined by f(x) = x2 + x


Let A = [-1, 1]. Then, discuss whether the following function from A to itself is one-one, onto or bijective : g(x) = |x|  


Show that f : R→ R, given by f(x) = x — [x], is neither one-one nor onto.


Find gof and fog when f : R → R and g : R → R is  defined by  f(x) = 8x3 and  g(x) = x1/3.


Consider f : N → Ng : N → N and h : N → R defined as f(x) = 2xg(y) = 3y + 4 and h(z) = sin z for all xyz ∈ N. Show that ho (gof) = (hogof.


Find fog and gof  if : f (x) = x+1, g (x) = sin x .


Let f be a real function given by f (x)=`sqrt (x-2)`
Find each of the following:

(i) fof
(ii) fofof
(iii) (fofof) (38)
(iv) f2

Also, show that fof ≠ `f^2` .


Let A = {1, 2, 3, 4}; B = {3, 5, 7, 9}; C = {7, 23, 47, 79} and f : A → Bg : B → C be defined as f(x) = 2x + 1 and g(x) = x2 − 2. Express (gof)−1 and f−1 og−1 as the sets of ordered pairs and verify that (gof)−1 = f−1 og−1.


Show that the function f : Q → Q, defined by f(x) = 3x + 5, is invertible. Also, find f−1


Consider the function f : R→  [-9 , ∞ ]given by f(x) = 5x2 + 6x - 9. Prove that f is invertible with -1 (y) = `(sqrt(54 + 5y) -3)/5`             [CBSE 2015]


Let C denote the set of all complex numbers. A function f : C → C is defined by f(x) = x3. Write f−1(1).


Let \[f : \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \to R\]  be a function defined by f(x) = cos [x]. Write range (f).


Let A = {1, 2, 3, 4} and B = {ab} be two sets. Write the total number of onto functions from A to B.


If the mapping f : {1, 3, 4} → {1, 2, 5} and g : {1, 2, 5} → {1, 3}, given by f = {(1, 2), (3, 5), (4, 1)} and g = {(2, 3), (5, 1), (1, 3)}, then write fog. [NCERT EXEMPLAR]


The function f : R → R defined by

`f (x) = 2^x + 2^(|x|)` is 

 


Let

f : R → R be given by

\[f\left( x \right) = \left[ x^2 \right] + \left[ x + 1 \right] - 3\]

where [x] denotes the greatest integer less than or equal to x. Then, f(x) is
 


(d) one-one and onto


Which of the following functions form Z to itself are bijections?

 

 

 
 

If the function\[f : R \to \text{A given by} f\left( x \right) = \frac{x^2}{x^2 + 1}\] is a surjection, then A =

 

 


The function \[f : R \to R\] defined by

\[f\left( x \right) = 6^x + 6^{|x|}\] is 

 


If  \[g\left( x \right) = x^2 + x - 2\text{ and} \frac{1}{2} gof\left( x \right) = 2 x^2 - 5x + 2\] is equal to


Let f: R → R be defined by f(x) = x2 + 1. Then, pre-images of 17 and – 3, respectively, are ______.


Let the function f: R → R be defined by f(x) = cosx, ∀ x ∈ R. Show that f is neither one-one nor onto


Which of the following functions from Z into Z are bijections?


Let f: R → R be the functions defined by f(x) = x3 + 5. Then f–1(x) is ______.


Let f: R – `{3/5}` → R be defined by f(x) = `(3x + 2)/(5x - 3)`. Then ______.


Let A = {0, 1} and N be the set of natural numbers. Then the mapping f: N → A defined by f(2n – 1) = 0, f(2n) = 1, ∀ n ∈ N, is onto.


Let f : R → R be defind by f(x) = `1/"x"  AA  "x" in "R".` Then f is ____________.


Let X = {-1, 0, 1}, Y = {0, 2} and a function f : X → Y defiend by y = 2x4, is ____________.


Range of `"f"("x") = sqrt((1 - "cos x") sqrt ((1 - "cos x")sqrt ((1 - "cos x")....infty))`


Let R be a relation on the set L of lines defined by l1 R l2 if l1 is perpendicular to l2, then relation R is ____________.


Let f: R → R defined by f(x) = 3x. Choose the correct answer


Let f: R→R be a continuous function such that f(x) + f(x + 1) = 2, for all x ∈ R. If I1 = `int_0^8f(x)dx` and I2 = `int_(-1)^3f(x)dx`, then the value of I1 + 2I2 is equal to ______.


Let f(1, 3) `rightarrow` R be a function defined by f(x) = `(x[x])/(1 + x^2)`, where [x] denotes the greatest integer ≤ x, Then the range of f is ______.


Let f(n) = `[1/3 + (3n)/100]n`, where [n] denotes the greatest integer less than or equal to n. Then `sum_(n = 1)^56f(n)` is equal to ______.



The given function f : R → R is not ‘onto’ function. Give reason.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×