मराठी

Find Fog And Gof If : F (X) = X2 G(X) = Cos X . - Mathematics

Advertisements
Advertisements

प्रश्न

Find fog and gof  if : f (x) = x2 g(x) = cos x .

उत्तर

f (x) = x2, g(x) = cos x

f : R→ [0, ∞) ; g : R→[−1, 1]

Computing fog :

Clearly, the range of g is not a subset of the domain of f.

⇒ Domain (fog) = {x: x∈domain of g and g (x) ∈domain of f}

⇒ Domain (fog) = x : x ∈ R and cos x ∈ R}

⇒ Domain of (fog) = R

fog : R→ R

(fog) (x) = f (g (x))

= f ( cos x )

= cos2x

Computing gof : 

Clearly, the range of f is a subset of the domain of g.

⇒ fog : R→R

(gof) (x) = g (f (x))

= g (x2)

= cos ( x2)

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Functions - Exercise 2.2 [पृष्ठ ५४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 2 Functions
Exercise 2.2 | Q 1.2 | पृष्ठ ५४

व्हिडिओ ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्‍न

Check the injectivity and surjectivity of the following function:

f: → N given by f(x) = x3


Show that the modulus function f: → R given by f(x) = |x| is neither one-one nor onto, where |x| is x, if x is positive or 0 and |x|  is − x if x is negative.


Show that the Signum Function f: R → R, given by `f(x) = {(1, if x > 0), (0, if x  = 0), (-1, if x < 0):}`  is neither one-one nor onto


Let f: R → R be defined as f(x) = 3x. Choose the correct answer.


Give examples of two functions fN → Z and gZ → Z such that g o f is injective but gis not injective.

(Hint: Consider f(x) = x and g(x) =|x|)


Let S = {abc} and T = {1, 2, 3}. Find F−1 of the following functions F from S to T, if it exists.

F = {(a, 2), (b, 1), (c, 1)}


Prove that the function f : N → N, defined by f(x) = x2 + x + 1, is one-one but not onto


Classify the following function as injection, surjection or bijection :

f : Q → Q, defined by f(x) = x3 + 1


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = 1 + x2


Let A = {1, 2, 3}. Write all one-one from A to itself.


Find gof and fog when f : R → R and g : R → R is defined by  f(x) = x2 + 2x − 3 and  g(x) = 3x − 4 .


Find  fog (2) and gof (1) when : f : R → R ; f(x) = x2 + 8 and g : R → Rg(x) = 3x3 + 1.


If f : A → B and g : B → C are one-one functions, show that gof is a one-one function.


Find fog and gof  if : f (x) = x+1, g(x) = `e^x`

.


Find f −1 if it exists : f : A → B, where A = {0, −1, −3, 2}; B = {−9, −3, 0, 6} and f(x) = 3 x.


If f : R → (−1, 1) defined by `f (x) = (10^x- 10^-x)/(10^x + 10 ^-x)` is invertible, find f−1.


Let f be a function from R to R, such that f(x) = cos (x + 2). Is f invertible? Justify your answer.


Let f : R → R+ be defined by f(x) = axa > 0 and a ≠ 1. Write f−1 (x).


What is the range of the function

`f (x) = ([x - 1])/(x -1) ?`


\[f : R \to R \text{given by} f\left( x \right) = x + \sqrt{x^2} \text{ is }\]

 

 


Let  \[f\left( x \right) = x^2 and g\left( x \right) = 2^x\] Then, the solution set of the equation

\[fog \left( x \right) = gof \left( x \right)\] is 



The distinct linear functions that map [−1, 1] onto [0, 2] are


Let A = R − (2) and B = R − (1). If f: A ⟶ B is a function defined by`"f(x)"=("x"-1)/("x"-2),` how that f is one-one and onto. Hence, find f−1


A function f: R→ R defined by f(x) = `(3x) /5 + 2`, x ∈ R. Show that f is one-one and onto. Hence find f−1.


Let R be the set of real numbers and f: R → R be the function defined by f(x) = 4x + 5. Show that f is invertible and find f–1.


The domain of the function f: R → R defined by f(x) = `sqrt(x^2 - 3x + 2)` is ______


Let A be a finite set. Then, each injective function from A into itself is not surjective.


Let f: R → R be the function defined by f(x) = 2x – 3 ∀ x ∈ R. write f–1 


Are the following set of ordered pairs functions? If so, examine whether the mapping is injective or surjective.
{(a, b): a is a person, b is an ancestor of a}


Let A = R – {3}, B = R – {1}. Let f: A → B be defined by f(x) = `(x - 2)/(x - 3)` ∀ x ∈ A . Then show that f is bijective


The function f : A → B defined by f(x) = 4x + 7, x ∈ R is ____________.


Let f : R → R be defind by f(x) = `1/"x"  AA  "x" in "R".` Then f is ____________.


Let X = {-1, 0, 1}, Y = {0, 2} and a function f : X → Y defiend by y = 2x4, is ____________.


The function f : R → R given by f(x) = x3 – 1 is ____________.


Given a function If as f(x) = 5x + 4, x ∈ R. If g : R → R is inverse of function ‘f then


If f: R → R given by f(x) =(3 − x3)1/3, find f0f(x)


A function f: x → y is said to be one – one (or injective) if:


Consider a function f: `[0, pi/2] ->` R, given by f(x) = sinx and `g[0, pi/2] ->` R given by g(x) = cosx then f and g are


Let f: R→R be a polynomial function satisfying f(x + y) = f(x) + f(y) + 3xy(x + y) –1 ∀ x, y ∈ R and f'(0) = 1, then `lim_(x→∞)(f(2x))/(f(x)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×