मराठी

Give Examples of Two Functions F: N → Z And G: Z → Z Such That G O F Is Injective But Gis Not Injective. (Hint: Consider F(X) = X And G(X) =|X|) - Mathematics

Advertisements
Advertisements

प्रश्न

Give examples of two functions fN → Z and gZ → Z such that g o f is injective but gis not injective.

(Hint: Consider f(x) = x and g(x) =|x|)

उत्तर

Define fN → Z as f(x) = x and gZ → Z as g(x) =|x|.

We first show that g is not injective.

It can be observed that:

g(−1) = `|-1| = 1`

g(1) =  `|1| = 1`

∴ g(−1) = g(1), but −1 ≠ 1.

∴ g is not injective.

Now, gofN → Z is defined as

`gof(x) = g(f(x)) = g(x) = |x|`

Let xy ∈ N such that gof(x) = gof(y).

⇒ |x| = |y|

Since x and y ∈ N, both are positive.

`:. |x| = |y| => x = y`

Hence, gof is injective

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Relations and Functions - Exercise 1.5 [पृष्ठ २९]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 1 Relations and Functions
Exercise 1.5 | Q 6 | पृष्ठ २९

व्हिडिओ ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्‍न

Check the injectivity and surjectivity of the following function:

f: Z → Z given by f(x) = x2


Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. Show that f is one-one.


Classify the following function as injection, surjection or bijection :

f : Z → Z, defined by f(x) = x2 + x


Classify the following function as injection, surjection or bijection :

 f : Z → Z, defined by f(x) = x − 5 


If A = {1, 2, 3}, show that a one-one function f : A → A must be onto.


Find gof and fog when f : R → R and g : R → R is defined by  f(x) = x and g(x) = |x| .


Let f = {(3, 1), (9, 3), (12, 4)} and g = {(1, 3), (3, 3) (4, 9) (5, 9)}. Show that gof and fog are both defined. Also, find fog and gof.


Let f = {(1, −1), (4, −2), (9, −3), (16, 4)} and g = {(−1, −2), (−2, −4), (−3, −6), (4, 8)}. Show that gof is defined while fog is not defined. Also, find gof.


Find fog and gof  if : f(x) = sin−1 x, g(x) = x2


Find fog and gof  if : f(x)= x + 1, g (x) = 2x + 3 .


if f (x) = `sqrt (x +3) and  g (x) = x ^2 + 1` be two real functions, then find fog and gof.


State with reason whether the following functions have inverse:

h : {2, 3, 4, 5} → {7, 9, 11, 13} with h = {(2, 7), (3, 9), (4, 11), (5, 13)}


Show that the function f : Q → Q, defined by f(x) = 3x + 5, is invertible. Also, find f−1


Consider f : R → R given by f(x) = 4x + 3. Show that f is invertible. Find the inverse of f.


Let A = R - {3} and B = R - {1}. Consider the function f : A → B defined by f(x) = `(x-2)/(x-3).`Show that f is one-one and onto and hence find f-1.

                    [CBSE 2012, 2014]


Let f : R → R+ be defined by f(x) = axa > 0 and a ≠ 1. Write f−1 (x).


Let f : R → Rg : R → R be two functions defined by f(x) = x2 + x + 1 and g(x) = 1 − x2. Write fog (−2).


Let f : R → R be defined as  `f (x) = (2x - 3)/4.` write fo f-1 (1) .


Let f be an invertible real function. Write ( f-1  of ) (1) + ( f-1  of ) (2) +..... +( f-1 of ) (100 )


Write the domain of the real function

`f (x) = sqrt([x] - x) .`


Write the domain of the real function

`f (x) = 1/(sqrt([x] - x)`.


If f : R → R be defined by f(x) = (3 − x3)1/3, then find fof (x).


Let A = {abcd} and f : A → A be given by f = {( a,b ),( b , d ),( c , a ) , ( d , c )} write `f^-1`. [NCERT EXEMPLAR]


Let [x] denote the greatest integer less than or equal to x. If \[f\left( x \right) = \sin^{- 1} x, g\left( x \right) = \left[ x^2 \right]\text{  and } h\left( x \right) = 2x, \frac{1}{2} \leq x \leq \frac{1}{\sqrt{2}}\]

 


If  \[f\left( x \right) = \sin^2 x\] and the composite function   \[g\left( f\left( x \right) \right) = \left| \sin x \right|\] then g(x) is equal to


If \[f : R \to R\] is given by \[f\left( x \right) = x^3 + 3, \text{then} f^{- 1} \left( x \right)\] is equal to

 


Mark the correct alternative in the following question:

Let f : → R be given by f(x) = tanx. Then, f-1(1) is

 

 


Write about strlen() function.


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

h(x) = x|x|


Which of the following functions from Z into Z are bijections?


Let A = {0, 1} and N be the set of natural numbers. Then the mapping f: N → A defined by f(2n – 1) = 0, f(2n) = 1, ∀ n ∈ N, is onto.


Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.

Answer the following questions using the above information.

  • Let f: N → N be defined by f(x) = x2 is ____________.

Function f: R → R, defined by f(x) = `x/(x^2 + 1)` ∀ x ∈ R is not


The solution set of the inequation log1/3(x2 + x + 1) + 1 > 0 is ______.


Let A = {1, 2, 3, ..., 10} and f : A `rightarrow` A be defined as

f(k) = `{{:(k + 1, if k  "is odd"),(     k, if k  "is even"):}`.

Then the number of possible functions g : A `rightarrow` A such that gof = f is ______.


The function f(x) = [x], where [x] denotes the greatest integer less than or equal to x; is continuous at ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×