मराठी

Let F = {(1, −1), (4, −2), (9, −3), (16, 4)} and G = {(−1, −2), (−2, −4), (−3, −6), (4, 8)}. Show that Gof is Defined While Fog is Not Defined. Also, Find Gof. - Mathematics

Advertisements
Advertisements

प्रश्न

Let f = {(1, −1), (4, −2), (9, −3), (16, 4)} and g = {(−1, −2), (−2, −4), (−3, −6), (4, 8)}. Show that gof is defined while fog is not defined. Also, find gof.

उत्तर

f = {(1, −1), (4, −2), (9, −3), (16, 4)} and g = {(−1, −2), (−2, −4), (−3, −6), (4, 8)}
: {1, 4, 9, 16} → {-1, -2, -3, 4} and g : {-1, -2, -3, 4} → {-2, -4, -6, 8}

Co-domain of f = domain of g
So, gof exists and gof : {1, 4, 9, 16} → {-2, -4, -6, 8}

(gof) (1g (f (1)g (12

(gof) (4g (f (4))=g (24

(gof) (9g (f (9)g  (36

(gof) (16=g (f (16)=g (48

So, go(1, 2), (4, 4), (9, 6), (16, 8}

But the co-domain of g is not same as the domain of f.
So, fog does not exist.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Functions - Exercise 2.2 [पृष्ठ ४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 2 Functions
Exercise 2.2 | Q 3 | पृष्ठ ४६

व्हिडिओ ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्‍न

Prove that the function f : N → N, defined by f(x) = x2 + x + 1, is one-one but not onto


Let A = {−1, 0, 1} and f = {(xx2) : x ∈ A}. Show that f : A → A is neither one-one nor onto.


Classify the following function as injection, surjection or bijection :  f : Z → Z given by f(x) = x3


Let A = [-1, 1]. Then, discuss whether the following function from A to itself is one-one, onto or bijective : `f (x) = x/2`


Let A = [-1, 1]. Then, discuss whether the following function from A to itself is one-one, onto or bijective : g(x) = |x|  


Let A = [-1, 1]. Then, discuss whether the following functions from A to itself is one-one, onto or bijective : h(x) = x2 


Find the number of all onto functions from the set A = {1, 2, 3, ..., n} to itself.


Give examples of two one-one functions f1 and f2 from R to R, such that f1 + f2 : R → R. defined by (f1 + f2) (x) = f1 (x) + f2 (x) is not one-one.


Let f = {(3, 1), (9, 3), (12, 4)} and g = {(1, 3), (3, 3) (4, 9) (5, 9)}. Show that gof and fog are both defined. Also, find fog and gof.


Give examples of two functions f : N → N and g : N → N, such that gof is onto but f is not onto.


Find fog and gof  if : f(x) = `x^2` + 2 , g (x) = 1 − `1/ (1-x)`.


Let f(x) = x2 + x + 1 and g(x) = sin x. Show that fog ≠ gof.


 If f, g : R → R be two functions defined as f(x) = |x| + x and g(x) = |x|- x, ∀x∈R" .Then find fog and gof. Hence find fog(–3), fog(5) and gof (–2).


State with reason whether the following functions have inverse :

g : {5, 6, 7, 8} → {1, 2, 3, 4} with g = {(5, 4), (6, 3), (7, 4), (8, 2)}


Consider f : R → R+ → [4, ∞) given by f(x) = x2 + 4. Show that f is invertible with inverse f−1 of f given by f−1 `(x)= sqrt (x-4)` where R+ is the set of all non-negative real numbers.


A function f : R → R is defined as f(x) = x3 + 4. Is it a bijection or not? In case it is a bijection, find f−1 (3).


If f : Q → Qg : Q → Q are two functions defined by f(x) = 2 x and g(x) = x + 2, show that f and g are bijective maps. Verify that (gof)−1 = f−1 og −1.


If A = {abc} and B = {−2, −1, 0, 1, 2}, write the total number of one-one functions from A to B.


If f : C → C is defined by f(x) = x2, write f−1 (−4). Here, C denotes the set of all complex numbers.


 If f : R → R be defined by f(x) = x4, write f−1 (1).

If f : C → C is defined by f(x) = x4, write f−1 (1).


If f : R → Rg : R → are given by f(x) = (x + 1)2 and g(x) = x2 + 1, then write the value of fog (−3).


Which of the following functions from

\[A = \left\{ x \in R : - 1 \leq x \leq 1 \right\}\]

 


Let  \[f\left( x \right) = x^2 and g\left( x \right) = 2^x\] Then, the solution set of the equation

\[fog \left( x \right) = gof \left( x \right)\] is 



Let

 \[A = \left\{ x \in R : x \geq 1 \right\}\] The inverse of the function, 

\[f : A \to A\] given by

\[f\left( x \right) = 2^{x \left( x - 1 \right)} , is\]

 


Write about strlen() function.


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

h(x) = x|x|


If f(x) = (4 – (x – 7)3}, then f–1(x) = ______.


Let A = {0, 1} and N be the set of natural numbers. Then the mapping f: N → A defined by f(2n – 1) = 0, f(2n) = 1, ∀ n ∈ N, is onto.


The number of bijective functions from set A to itself when A contains 106 elements is ____________.


Let R be a relation on the set L of lines defined by l1 R l2 if l1 is perpendicular to l2, then relation R is ____________.


Students of Grade 9, planned to plant saplings along straight lines, parallel to each other to one side of the playground ensuring that they had enough play area. Let us assume that they planted one of the rows of the saplings along the line y = x − 4. Let L be the set of all lines which are parallel on the ground and R be a relation on L.

Answer the following using the above information.

  • The function f: R → R defined by f(x) = x − 4 is ____________.

Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.

Answer the following questions using the above information.

  • Let f: {1,2,3,....} → {1,4,9,....} be defined by f(x) = x2 is ____________.

Let n(A) = 4 and n(B) = 6, Then the number of one – one functions from 'A' to 'B' is:


Let the function f: R → R be defined by f(x) = 4x – 1, ∀ x ∈ R then 'f' is


Let a function `f: N rightarrow N` be defined by

f(n) = `{:[(2n",", n = 2","  4","  6","  8","......),(n - 1",", n = 3","  7","  11","  15","......),((n + 1)/2",", n = 1","  5","  9","  13","......):}`

then f is ______.


Find the domain of sin–1 (x2 – 4).


The trigonometric equation tan–1x = 3tan–1 a has solution for ______.



The given function f : R → R is not ‘onto’ function. Give reason.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×