मराठी

If f(x) = (4 – (x – 7)3}, then f–1(x) = ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If f(x) = (4 – (x – 7)3}, then f–1(x) = ______.

रिकाम्या जागा भरा

उत्तर

If f(x) = (4 – (x – 7)3}, then f–1(x) = `7 + (4 - x)^(1/3)`.

Explanation:

Given that, f(x) = [4 – (x – 7)3]

Let y = [4 – (x – 7)3]

⇒ (x – 7)3) = 4 – y

⇒ (x – 7) = `(4 - y)^(1/3)`

⇒ x = 7 + `(4 - y)^(1/3)`

⇒ f–1(x) = `7 + (4 - x)^(1/3)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Relations And Functions - Exercise [पृष्ठ १७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 1 Relations And Functions
Exercise | Q 52 | पृष्ठ १७

व्हिडिओ ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्‍न

Check the injectivity and surjectivity of the following function:

f: R → R given by f(x) = x2


Let f: R → R be defined as f(x) = 3x. Choose the correct answer.


Let fR → be defined as f(x) = 10x + 7. Find the function gR → R such that g o f = f o = 1R.


Show that the function f: R → R given by f(x) = x3 is injective.


Classify the following function as injection, surjection or bijection :

f : Z → Z, defined by f(x) = x2 + x


If f : A → B is an injection, such that range of f = {a}, determine the number of elements in A.


Let f : R → R and g : R → R be defined by f(x) = x2 and g(x) = x + 1. Show that fog ≠ gof.


If f : A → B and g : B → C are one-one functions, show that gof is a one-one function.


 Find fog and gof  if  : f (x) = ex g(x) = loge x .


Find f −1 if it exists : f : A → B, where A = {1, 3, 5, 7, 9}; B = {0, 1, 9, 25, 49, 81} and f(x) = x2


Show that the function f : Q → Q, defined by f(x) = 3x + 5, is invertible. Also, find f−1


Which one of the following graphs represents a function?


If A = {abc} and B = {−2, −1, 0, 1, 2}, write the total number of one-one functions from A to B.


If f : R → R is defined by f(x) = x2, find f−1 (−25).


Write the domain of the real function

`f (x) = 1/(sqrt([x] - x)`.


Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. State whether f is one-one or not.


Let A = {abcd} and f : A → A be given by f = {( a,b ),( b , d ),( c , a ) , ( d , c )} write `f^-1`. [NCERT EXEMPLAR]


The function \[f : [0, \infty ) \to \text {R given by } f\left( x \right) = \frac{x}{x + 1} is\]

 

 


Let  \[f\left( x \right) = x^2 and g\left( x \right) = 2^x\] Then, the solution set of the equation

\[fog \left( x \right) = gof \left( x \right)\] is 



If  \[F : [1, \infty ) \to [2, \infty )\] is given by

\[f\left( x \right) = x + \frac{1}{x}, then f^{- 1} \left( x \right)\]

 


Let 
\[f : R \to R\]  be given by \[f\left( x \right) = x^2 - 3\] Then, \[f^{- 1}\] is given by 

 


Set A has 3 elements and the set B has 4 elements. Then the number of injective mappings that can be defined from A to B is ______.


Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not

k = {(1,4), (2, 5)}


Let A = R – {3}, B = R – {1}. Let f: A → B be defined by f(x) = `(x - 2)/(x - 3)` ∀ x ∈ A . Then show that f is bijective


The smallest integer function f(x) = [x] is ____________.


Let X = {-1, 0, 1}, Y = {0, 2} and a function f : X → Y defiend by y = 2x4, is ____________.


Range of `"f"("x") = sqrt((1 - "cos x") sqrt ((1 - "cos x")sqrt ((1 - "cos x")....infty))`


If f: [0, 1]→[0, 1] is defined by f(x) = `(x + 1)/4` and `d/(dx) underbrace(((fofof......of)(x)))_("n"  "times")""|_(x = 1/2) = 1/"m"^"n"`, m ∈ N, then the value of 'm' is ______.


Which one of the following graphs is a function of x?

Graph A Graph B

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×