Advertisements
Advertisements
प्रश्न
If f(x) = (4 – (x – 7)3}, then f–1(x) = ______.
उत्तर
If f(x) = (4 – (x – 7)3}, then f–1(x) = `7 + (4 - x)^(1/3)`.
Explanation:
Given that, f(x) = [4 – (x – 7)3]
Let y = [4 – (x – 7)3]
⇒ (x – 7)3) = 4 – y
⇒ (x – 7) = `(4 - y)^(1/3)`
⇒ x = 7 + `(4 - y)^(1/3)`
⇒ f–1(x) = `7 + (4 - x)^(1/3)`
APPEARS IN
संबंधित प्रश्न
Check the injectivity and surjectivity of the following function:
f: R → R given by f(x) = x2
Let f: R → R be defined as f(x) = 3x. Choose the correct answer.
Let f: R → R be defined as f(x) = 10x + 7. Find the function g: R → R such that g o f = f o g = 1R.
Show that the function f: R → R given by f(x) = x3 is injective.
Classify the following function as injection, surjection or bijection :
f : Z → Z, defined by f(x) = x2 + x
If f : A → B is an injection, such that range of f = {a}, determine the number of elements in A.
Let f : R → R and g : R → R be defined by f(x) = x2 and g(x) = x + 1. Show that fog ≠ gof.
If f : A → B and g : B → C are one-one functions, show that gof is a one-one function.
Find fog and gof if : f (x) = ex g(x) = loge x .
Find f −1 if it exists : f : A → B, where A = {1, 3, 5, 7, 9}; B = {0, 1, 9, 25, 49, 81} and f(x) = x2
Show that the function f : Q → Q, defined by f(x) = 3x + 5, is invertible. Also, find f−1
Which one of the following graphs represents a function?
If A = {a, b, c} and B = {−2, −1, 0, 1, 2}, write the total number of one-one functions from A to B.
If f : R → R is defined by f(x) = x2, find f−1 (−25).
Write the domain of the real function
`f (x) = 1/(sqrt([x] - x)`.
Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. State whether f is one-one or not.
Let A = {a, b, c, d} and f : A → A be given by f = {( a,b ),( b , d ),( c , a ) , ( d , c )} write `f^-1`. [NCERT EXEMPLAR]
The function \[f : [0, \infty ) \to \text {R given by } f\left( x \right) = \frac{x}{x + 1} is\]
Let \[f\left( x \right) = x^2 and g\left( x \right) = 2^x\] Then, the solution set of the equation
If \[F : [1, \infty ) \to [2, \infty )\] is given by
\[f\left( x \right) = x + \frac{1}{x}, then f^{- 1} \left( x \right)\]
Let
\[f : R \to R\] be given by \[f\left( x \right) = x^2 - 3\] Then, \[f^{- 1}\] is given by
Set A has 3 elements and the set B has 4 elements. Then the number of injective mappings that can be defined from A to B is ______.
Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not
k = {(1,4), (2, 5)}
Let A = R – {3}, B = R – {1}. Let f: A → B be defined by f(x) = `(x - 2)/(x - 3)` ∀ x ∈ A . Then show that f is bijective
The smallest integer function f(x) = [x] is ____________.
Let X = {-1, 0, 1}, Y = {0, 2} and a function f : X → Y defiend by y = 2x4, is ____________.
Range of `"f"("x") = sqrt((1 - "cos x") sqrt ((1 - "cos x")sqrt ((1 - "cos x")....infty))`
If f: [0, 1]→[0, 1] is defined by f(x) = `(x + 1)/4` and `d/(dx) underbrace(((fofof......of)(x)))_("n" "times")""|_(x = 1/2) = 1/"m"^"n"`, m ∈ N, then the value of 'm' is ______.
Which one of the following graphs is a function of x?
![]() |
![]() |
Graph A | Graph B |