मराठी

If F : [ 1 , ∞ ) → [ 2 , ∞ ) is Given by F ( X ) = X + 1 X , T H E N F − 1 ( X ) (A) X + √ X 2 − 4 2 (B) X 1 + X 2 (C) X − √ X 2 − 4 2 (D) 1 + √ X 2 − 4 - Mathematics

Advertisements
Advertisements

प्रश्न

If  \[F : [1, \infty ) \to [2, \infty )\] is given by

\[f\left( x \right) = x + \frac{1}{x}, then f^{- 1} \left( x \right)\]

 

पर्याय

  • \[\frac{x + \sqrt{x^2 - 4}}{2}\]

  • \[\frac{x}{1 + x^2}\]

  • \[\frac{x - \sqrt{x^2 - 4}}{2}\]

  • \[1 + \sqrt{x^2 - 4}\]

MCQ

उत्तर

\[\text{Let } f^{- 1} \left( x \right) = y\] 
\[ \Rightarrow f\left( y \right) = x\] 
\[ \Rightarrow y + \frac{1}{y} = x\] 
\[ \Rightarrow y^2 + 1 = xy\] 
\[ \Rightarrow y^2 - xy + 1 = 0\] 
\[ \Rightarrow y^2 - 2 \times y \times \frac{x}{2} + \left( \frac{x}{2} \right)^2 - \left( \frac{x}{2} \right)^2 + 1 = 0\] 
\[ \Rightarrow y^2 - 2 \times y \times \frac{x}{2} + \left( \frac{x}{2} \right)^2 = \frac{x^2 - 1}{4}\] 
\[ \Rightarrow \left( y - \frac{x}{2} \right)^2 = \frac{x^2 - 1}{4}\] 
\[ \Rightarrow y - \frac{x}{2} = \frac{\sqrt{x^2 - 4}}{2}\] 
\[ \Rightarrow y = \frac{x}{2} + \frac{\sqrt{x^2 - 4}}{2}\] 
\[ \Rightarrow y = \frac{x + \sqrt{x^2 - 4}}{2}\] 
\[ \Rightarrow f^{- 1} \left( x \right) = \frac{x + \sqrt{x^2 - 4}}{2}\]

So, the answer is (a) .

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Functions - Exercise 2.6 [पृष्ठ ७८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 2 Functions
Exercise 2.6 | Q 38 | पृष्ठ ७८

व्हिडिओ ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्‍न

Show that the function f: R* → R* defined by `f(x) = 1/x` is one-one and onto, where R* is the set of all non-zero real numbers. Is the result true if the domain R* is replaced by N, with co-domain being same as R?


Check the injectivity and surjectivity of the following function:

f: Z → Z given by f(x) = x2


Show that the Signum Function f: R → R, given by `f(x) = {(1, if x > 0), (0, if x  = 0), (-1, if x < 0):}`  is neither one-one nor onto


Following the case, state whether the function is one-one, onto, or bijective. Justify your answer.

f : → R defined by f(x) = 3 − 4x


Which of the following functions from A to B are one-one and onto?

 f2 = {(2, a), (3, b), (4, c)} ; A = {2, 3, 4}, B = {abc}


Let A = {−1, 0, 1} and f = {(xx2) : x ∈ A}. Show that f : A → A is neither one-one nor onto.


Classify the following function as injection, surjection or bijection :

f : Q − {3} → Q, defined by `f (x) = (2x +3)/(x-3)`


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = 3 − 4x


Set of ordered pair of  a function? If so, examine whether the mapping is injective or surjective :{(xy) : x is a person, y is the mother of x}


If A = {1, 2, 3}, show that a one-one function f : A → A must be onto.


Find the number of all onto functions from the set A = {1, 2, 3, ..., n} to itself.


 Find fog and gof  if  : f (x) = ex g(x) = loge x .


Find fog and gof  if : f(x) = c, c ∈ R, g(x) = sin `x^2`


 If f, g : R → R be two functions defined as f(x) = |x| + x and g(x) = |x|- x, ∀x∈R" .Then find fog and gof. Hence find fog(–3), fog(5) and gof (–2).


State with reason whether the following functions have inverse :
f : {1, 2, 3, 4} → {10} with f = {(1, 10), (2, 10), (3, 10), (4, 10)}


Find f −1 if it exists : f : A → B, where A = {0, −1, −3, 2}; B = {−9, −3, 0, 6} and f(x) = 3 x.


Show that the function f : Q → Q, defined by f(x) = 3x + 5, is invertible. Also, find f−1


Let A = R - {3} and B = R - {1}. Consider the function f : A → B defined by f(x) = `(x-2)/(x-3).`Show that f is one-one and onto and hence find f-1.

                    [CBSE 2012, 2014]


Write the domain of the real function

`f (x) = sqrtx - [x] .`


Let f : R → R be the function defined by f(x) = 4x − 3 for all x ∈ R Then write f .   [NCERT EXEMPLAR]


If f(x) = 4 −( x - 7)3 then write f-1 (x).


Let 

\[A = \left\{ x \in R : - 1 \leq x \leq 1 \right\} = B\] Then, the mapping\[f : A \to \text{B given by} f\left( x \right) = x\left| x \right|\] is 

 


The range of the function

\[f\left( x \right) =^{7 - x} P_{x - 3}\]

 


The function \[f : R \to R\] defined by

\[f\left( x \right) = 6^x + 6^{|x|}\] is 

 


If \[g \left( f \left( x \right) \right) = \left| \sin x \right| \text{and} f \left( g \left( x \right) \right) = \left( \sin \sqrt{x} \right)^2 , \text{then}\]

 


If the function

\[f : R \to R\]  be such that

\[f\left( x \right) = x - \left[ x \right]\] where [x] denotes the greatest integer less than or equal to x, then \[f^{- 1} \left( x \right)\]

 


Are the following set of ordered pairs functions? If so, examine whether the mapping is injective or surjective.
{(a, b): a is a person, b is an ancestor of a}


Let C be the set of complex numbers. Prove that the mapping f: C → R given by f(z) = |z|, ∀ z ∈ C, is neither one-one nor onto.


Let X = {-1, 0, 1}, Y = {0, 2} and a function f : X → Y defiend by y = 2x4, is ____________.


If N be the set of all-natural numbers, consider f: N → N such that f(x) = 2x, ∀ x ∈ N, then f is ____________.


Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin’s sister Raji observed and noted the possible outcomes of the throw every time belongs to set {1,2,3,4,5,6}. Let A be the set of players while B be the set of all possible outcomes.

A = {S, D}, B = {1,2,3,4,5,6}

  • Raji wants to know the number of functions from A to B. How many number of functions are possible?

If f: R → R given by f(x) =(3 − x3)1/3, find f0f(x)


If f: R→R is a function defined by f(x) = `[x - 1]cos((2x - 1)/2)π`, where [ ] denotes the greatest integer function, then f is ______.


If log102 = 0.3010.log103 = 0.4771 then the number of ciphers after decimal before a significant figure comes in `(5/3)^-100` is ______.


`x^(log_5x) > 5` implies ______.


Difference between the greatest and least value of f(x) = `(1 + (cos^-1x)/π)^2 - (1 + (sin^-1x)/π)^2` is ______.


Let a function `f: N rightarrow N` be defined by

f(n) = `{:[(2n",", n = 2","  4","  6","  8","......),(n - 1",", n = 3","  7","  11","  15","......),((n + 1)/2",", n = 1","  5","  9","  13","......):}`

then f is ______.


Which one of the following graphs is a function of x?

Graph A Graph B

The trigonometric equation tan–1x = 3tan–1 a has solution for ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×