Advertisements
Advertisements
प्रश्न
Let
\[A = \left\{ x \in R : - 1 \leq x \leq 1 \right\} = B\] Then, the mapping\[f : A \to \text{B given by} f\left( x \right) = x\left| x \right|\] is
पर्याय
injective but not surjective
surjective but not injective
bijective
none of these
उत्तर
Injectivity:
Let x and y be any two elements in the domain A.
Case-1: Let x and y be two positive numbers, such that
\[f\left( x \right) = f\left( y \right)\]
\[ \Rightarrow x\left| x \right| = y\left| y \right|\]
\[ \Rightarrow x\left( x \right) = y\left( y \right)\]
\[ \Rightarrow x^2 = y^2 \]
\[ \Rightarrow x = y\]
Case-2: Let x and y be two negative numbers, such that
\[f\left( x \right) = f\left( y \right)\]
\[ \Rightarrow x\left| x \right| = y\left| y \right|\]
\[ \Rightarrow x\left( - x \right) = y\left( - y \right)\]
\[ \Rightarrow - x^2 = - y^2 \]
\[ \Rightarrow x^2 = y^2 \]
\[ \Rightarrow x = y\]
Case-3: Let x be positive and y be negative.
\[\text{Then},x \neq y\]
\[ \Rightarrow f\left( x \right) = x\left| x \right| \text{is positive and}\]
\[f\left( y \right) = y\left| y \right| \text{is negative}\]
\[ \Rightarrow f\left( x \right) \neq f\left( y \right)\]
\[So, x \neq y\]
\[ \Rightarrow f\left( x \right) \neq f\left( y \right)\]
From the 3 cases, we can conclude that f is one-one.
Surjectivity:
Let y be an element in the co-domain, such that y = f (x)
\[\text{Case}-1: \text{Lety}>0. \text{Then}, 0<y\leq1\]
\[ \Rightarrow y = f\left( x \right) = x\left| x \right| > 0\]
\[ \Rightarrow x > 0\]
\[ \Rightarrow \left| x \right| = x\]
\[f\left( x \right) = y\]
\[ \Rightarrow x\left| x \right| = y\]
\[ \Rightarrow x\left( x \right) = y\]
\[ \Rightarrow x^2 = y\]
\[ \Rightarrow x = \sqrt{y} \in A \left( \text{ We do not get \pm because }x>0 \right)\]
\[\text{Case}-2: \text{Lety}<0. Then, -1\leq y<0\]
\[ \Rightarrow y = f\left( x \right) = x\left| x \right| < 0\]
\[ \Rightarrow x < 0\]
\[ \Rightarrow \left| x \right| = - x\]
\[f\left( x \right) = y\]
\[ \Rightarrow x\left| x \right| = y\]
\[ \Rightarrow x\left( - x \right) = y\]
\[ \Rightarrow - x^2 = y\]
\[ \Rightarrow x^2 = - y\]
\[ \Rightarrow x = \sqrt{-y} \in A \left( \text{ We do not get ± because }x>0 \right)\]
⇒ f is onto.
⇒ f is a bijection.
So, the answer is (c).
APPEARS IN
संबंधित प्रश्न
Check the injectivity and surjectivity of the following function:
f: Z → Z given by f(x) = x2
Let A = {−1, 0, 1, 2}, B = {−4, −2, 0, 2} and f, g: A → B be functions defined by f(x) = x2 − x, x ∈ A and g(x) = `2|x - 1/2|- 1, x in A`. Are f and g equal?
Justify your answer. (Hint: One may note that two functions f: A → B and g: A → B such that f(a) = g(a) ∀ a ∈ A are called equal functions).
Let A = {−1, 0, 1} and f = {(x, x2) : x ∈ A}. Show that f : A → A is neither one-one nor onto.
Classify the following function as injection, surjection or bijection :
f : R → R, defined by f(x) = sinx
Find gof and fog when f : R → R and g : R → R is defined by f(x) = 2x + x2 and g(x) = x3
Let A = {a, b, c}, B = {u v, w} and let f and g be two functions from A to B and from B to A, respectively, defined as :
f = {(a, v), (b, u), (c, w)}, g = {(u, b), (v, a), (w, c)}.
Show that f and g both are bijections and find fog and gof.
Find fog and gof if : f (x) = |x|, g (x) = sin x .
Find fog and gof if : f(x) = `x^2` + 2 , g (x) = 1 − `1/ (1-x)`.
if `f (x) = sqrt(1-x)` and g(x) = `log_e` x are two real functions, then describe functions fog and gof.
if f (x) = `sqrt (x +3) and g (x) = x ^2 + 1` be two real functions, then find fog and gof.
If f, g : R → R be two functions defined as f(x) = |x| + x and g(x) = |x|- x, ∀x∈R" .Then find fog and gof. Hence find fog(–3), fog(5) and gof (–2).
Let A = R - {3} and B = R - {1}. Consider the function f : A → B defined by f(x) = `(x-2)/(x-3).`Show that f is one-one and onto and hence find f-1.
[CBSE 2012, 2014]
If f : R → R is given by f(x) = x3, write f−1 (1).
If f : C → C is defined by f(x) = x4, write f−1 (1).
If f : R → R, g : R → are given by f(x) = (x + 1)2 and g(x) = x2 + 1, then write the value of fog (−3).
Let f : R → R+ be defined by f(x) = ax, a > 0 and a ≠ 1. Write f−1 (x).
If f(x) = x + 7 and g(x) = x − 7, x ∈ R, write fog (7).
Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. State whether f is one-one or not.
Which one the following relations on A = {1, 2, 3} is a function?
f = {(1, 3), (2, 3), (3, 2)}, g = {(1, 2), (1, 3), (3, 1)} [NCERT EXEMPLAR]
A function f from the set of natural numbers to integers defined by
`{([n-1]/2," when n is odd" is ),(-n/2,when n is even ) :}`
Which of the following functions form Z to itself are bijections?
Let
\[A = \left\{ x \in R : x \leq 1 \right\} and f : A \to A\] be defined as
\[f\left( x \right) = x \left( 2 - x \right)\] Then,
\[f^{- 1} \left( x \right)\] is
The distinct linear functions that map [−1, 1] onto [0, 2] are
If \[g\left( x \right) = x^2 + x - 2\text{ and} \frac{1}{2} gof\left( x \right) = 2 x^2 - 5x + 2\] is equal to
Mark the correct alternative in the following question:
If the set A contains 7 elements and the set B contains 10 elements, then the number one-one functions from A to B is
Let A = ℝ − {3}, B = ℝ − {1}. Let f : A → B be defined by \[f\left( x \right) = \frac{x - 2}{x - 3}, \forall x \in A\] Show that f is bijective. Also, find
(i) x, if f−1(x) = 4
(ii) f−1(7)
Are the following set of ordered pairs functions? If so, examine whether the mapping is injective or surjective.
{(a, b): a is a person, b is an ancestor of a}
Let the function f: R → R be defined by f(x) = cosx, ∀ x ∈ R. Show that f is neither one-one nor onto
Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not
f = {(1, 4), (1, 5), (2, 4), (3, 5)}
Let A = R – {3}, B = R – {1}. Let f: A → B be defined by f(x) = `(x - 2)/(x - 3)` ∀ x ∈ A . Then show that f is bijective
Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:
g(x) = |x|
Let f: R – `{3/5}` → R be defined by f(x) = `(3x + 2)/(5x - 3)`. Then ______.
Let f: R → R be given by f(x) = tan x. Then f–1(1) is ______.
Let f : [0, ∞) → [0, 2] be defined by `"f" ("x") = (2"x")/(1 + "x"),` then f is ____________.
For x ∈ R, x ≠ 0, let f0(x) = `1/(1 - x)` and fn+1 (x) = f0(fn(x)), n = 0, 1, 2, .... Then the value of `f_100(3) + f_1(2/3) + f_2(3/2)` is equal to ______.
The trigonometric equation tan–1x = 3tan–1 a has solution for ______.