मराठी

Let (A) Injective but Not Surjective (B) Surjective but Not Injective (C) Bijective (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

Let 

\[A = \left\{ x \in R : - 1 \leq x \leq 1 \right\} = B\] Then, the mapping\[f : A \to \text{B given by} f\left( x \right) = x\left| x \right|\] is 

 

पर्याय

  • injective but not surjective

  • surjective but not injective

  • bijective

  • none of these

MCQ

उत्तर

Injectivity:
Let x and y be any two elements in the domain A.

Case-1: Let x and y be two positive numbers, such that

\[f\left( x \right) = f\left( y \right)\]
\[ \Rightarrow x\left| x \right| = y\left| y \right|\]
\[ \Rightarrow x\left( x \right) = y\left( y \right)\]
\[ \Rightarrow x^2 = y^2 \]
\[ \Rightarrow x = y\]

Case-2: Let x and y be two negative numbers, such that

\[f\left( x \right) = f\left( y \right)\]
\[ \Rightarrow x\left| x \right| = y\left| y \right|\]
\[ \Rightarrow x\left( - x \right) = y\left( - y \right)\]
\[ \Rightarrow - x^2 = - y^2 \]
\[ \Rightarrow x^2 = y^2 \]
\[ \Rightarrow x = y\]

Case-3: Let be positive and y be negative.

\[\text{Then},x \neq y\]
\[ \Rightarrow f\left( x \right) = x\left| x \right| \text{is positive and}\]
\[f\left( y \right) = y\left| y \right| \text{is negative}\]
\[ \Rightarrow f\left( x \right) \neq f\left( y \right)\]
\[So, x \neq y\]
\[ \Rightarrow f\left( x \right) \neq f\left( y \right)\]

From the 3 cases, we can conclude that  f is one-one.
Surjectivity:
Let y be an element in the co-domain, such that y = f (x)

\[\text{Case}-1: \text{Lety}>0. \text{Then}, 0<y\leq1\]
\[ \Rightarrow y = f\left( x \right) = x\left| x \right| > 0\]
\[ \Rightarrow x > 0\]
\[ \Rightarrow \left| x \right| = x\]
\[f\left( x \right) = y\]
\[ \Rightarrow x\left| x \right| = y\]
\[ \Rightarrow x\left( x \right) = y\]
\[ \Rightarrow x^2 = y\]
\[ \Rightarrow x = \sqrt{y} \in A \left( \text{ We do not get \pm because }x>0 \right)\]
\[\text{Case}-2: \text{Lety}<0. Then, -1\leq y<0\]
\[ \Rightarrow y = f\left( x \right) = x\left| x \right| < 0\]
\[ \Rightarrow x < 0\]
\[ \Rightarrow \left| x \right| = - x\]
\[f\left( x \right) = y\]
\[ \Rightarrow x\left| x \right| = y\]
\[ \Rightarrow x\left( - x \right) = y\]
\[ \Rightarrow - x^2 = y\]
\[ \Rightarrow x^2 = - y\]
\[ \Rightarrow x = \sqrt{-y} \in A \left( \text{ We do not get ± because }x>0 \right)\]

⇒ f is onto.

⇒ f is a bijection.

So, the answer is (c).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Functions - Exercise 2.6 [पृष्ठ ७५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 2 Functions
Exercise 2.6 | Q 7 | पृष्ठ ७५

व्हिडिओ ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्‍न

Check the injectivity and surjectivity of the following function:

f: Z → Z given by f(x) = x2


Let A = {−1, 0, 1, 2}, B = {−4, −2, 0, 2} and f, g: A → B be functions defined by f(x) = x2 − x, x ∈ A and g(x) = `2|x - 1/2|- 1, x in A`. Are f and g equal?

Justify your answer. (Hint: One may note that two functions f: A → B and g: A → B such that f(a) = g(a) ∀ a ∈ A are called equal functions).


Let A = {−1, 0, 1} and f = {(xx2) : x ∈ A}. Show that f : A → A is neither one-one nor onto.


Classify the following function as injection, surjection or bijection :

 f : R → R, defined by f(x) = sinx


Find gof and fog when f : R → R and g : R → R is defined by  f(x) = 2x + x2 and  g(x) = x3


Let A = {abc}, B = {u vw} and let f and g be two functions from A to B and from B to A, respectively, defined as :
f = {(av), (bu), (cw)}, g = {(ub), (va), (wc)}.
Show that f and g both are bijections and find fog and gof.


Find fog and gof  if : f (x) = |x|, g (x) = sin x .


Find fog and gof  if : f(x) = `x^2` + 2 , g (x) = 1 − `1/ (1-x)`.


   if `f (x) = sqrt(1-x)` and g(x) = `log_e` x are two real functions, then describe functions fog and gof.


if f (x) = `sqrt (x +3) and  g (x) = x ^2 + 1` be two real functions, then find fog and gof.


 If f, g : R → R be two functions defined as f(x) = |x| + x and g(x) = |x|- x, ∀x∈R" .Then find fog and gof. Hence find fog(–3), fog(5) and gof (–2).


Let A = R - {3} and B = R - {1}. Consider the function f : A → B defined by f(x) = `(x-2)/(x-3).`Show that f is one-one and onto and hence find f-1.

                    [CBSE 2012, 2014]


If f : R → R is given by f(x) = x3, write f−1 (1).


If f : C → C is defined by f(x) = x4, write f−1 (1).


If f : R → Rg : R → are given by f(x) = (x + 1)2 and g(x) = x2 + 1, then write the value of fog (−3).


Let f : R → R+ be defined by f(x) = axa > 0 and a ≠ 1. Write f−1 (x).


If f(x) = x + 7 and g(x) = x − 7, x ∈ R, write fog (7).


Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. State whether f is one-one or not.


Which one the following relations on A = {1, 2, 3} is a function?
f = {(1, 3), (2, 3), (3, 2)}, g = {(1, 2), (1, 3), (3, 1)}                                                                                                        [NCERT EXEMPLAR]


A function f  from the set of natural numbers to integers defined by

`{([n-1]/2," when  n is  odd"   is ),(-n/2,when  n  is  even ) :}`

 

 


Which of the following functions form Z to itself are bijections?

 

 

 
 

Let

\[A = \left\{ x \in R : x \leq 1 \right\} and f : A \to A\] be defined as

\[f\left( x \right) = x \left( 2 - x \right)\] Then,

\[f^{- 1} \left( x \right)\] is


The distinct linear functions that map [−1, 1] onto [0, 2] are


If  \[g\left( x \right) = x^2 + x - 2\text{ and} \frac{1}{2} gof\left( x \right) = 2 x^2 - 5x + 2\] is equal to


Mark the correct alternative in the following question:
If the set A contains 7 elements and the set B contains 10 elements, then the number one-one functions from A to B is


Let A = ℝ − {3}, B = ℝ − {1}. Let f : A → B be defined by \[f\left( x \right) = \frac{x - 2}{x - 3}, \forall x \in A\] Show that f is bijective. Also, find
(i) x, if f−1(x) = 4
(ii) f−1(7)


Are the following set of ordered pairs functions? If so, examine whether the mapping is injective or surjective.
{(a, b): a is a person, b is an ancestor of a}


Let the function f: R → R be defined by f(x) = cosx, ∀ x ∈ R. Show that f is neither one-one nor onto


Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not

f = {(1, 4), (1, 5), (2, 4), (3, 5)}


Let A = R – {3}, B = R – {1}. Let f: A → B be defined by f(x) = `(x - 2)/(x - 3)` ∀ x ∈ A . Then show that f is bijective


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

g(x) = |x|


Let f: R – `{3/5}` → R be defined by f(x) = `(3x + 2)/(5x - 3)`. Then ______.


Let f: R → R be given by f(x) = tan x. Then f–1(1) is ______.


Let f : [0, ∞) → [0, 2] be defined by `"f" ("x") = (2"x")/(1 + "x"),` then f is ____________.


For x ∈ R, x ≠ 0, let f0(x) = `1/(1 - x)` and fn+1 (x) = f0(fn(x)), n = 0, 1, 2, .... Then the value of `f_100(3) + f_1(2/3) + f_2(3/2)` is equal to ______.


The trigonometric equation tan–1x = 3tan–1 a has solution for ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×