मराठी

The Function F : a → B Defined by F (X) = - X2 + 6x - 8 is a Bijection If (A) a = (- ∞ , 3] and B = ( - ∞, 1 ] (B) a = [- 3 , ∞) and B = ( - ∞, 1 ] (C) a = (- ∞ , 3 - Mathematics

Advertisements
Advertisements

प्रश्न

The function 

f : A → B defined by 

f (x) = - x2 + 6x - 8 is a bijection if 

 

 

 

 

पर्याय

  • A = (- ∞ , 3] and B = ( - ∞, 1 ]

  •  A = [- 3 , ∞) and B = ( - ∞, 1 ]

  • A = (- ∞ , 3] and B = [ 1 ,∞)

  • A = [3 ,∞ ) and B = [ 1 ,∞ )

MCQ

उत्तर

 \[A = ( - \infty , 3] \text{and }B = ( - \infty , 1]\]

\[f\left( x \right) = - x^2 + 6x - 8 , \text{is a polynomial function}\]
\[\text{And the domain of polynomial function is real number} . \]
\[ \therefore x \in R\]

\[f(x) = - x^2 + 6x - 8\]
\[ = - \left( x^2 - 6x + 8 \right)\]
\[ = - \left( x^2 - 6x + 9 - 1 \right)\]
\[ = - \left( x - 3 \right)^2 + 1\]
\[\text{Maximum value of} - \left( x - 3 \right)^2 \text{woud be } 0\]
\[ \therefore \text{Maximum value of} - \left( x - 3 \right)^2 + 1 \text{woud be} 1\]
\[ \therefore f(x) \in ( - \infty , 1]\]

\[\text{We can see from the given graph that function is symmetrical about x = 3 & the given function is bijective .} \]
\[\text{So, x would be either} ( - \infty , 3 ] or [ 3, \infty )\]
\[\text{The correct option which satisfy A and B both is}: \]

\[A = ( - \infty , 3] \text{ and }B = ( - \infty , 1]\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Functions - Exercise 2.6 [पृष्ठ ७५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 2 Functions
Exercise 2.6 | Q 6 | पृष्ठ ७५

व्हिडिओ ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्‍न

Show that the function f: R* → R* defined by `f(x) = 1/x` is one-one and onto, where R* is the set of all non-zero real numbers. Is the result true if the domain R* is replaced by N, with co-domain being same as R?


Following the case, state whether the function is one-one, onto, or bijective. Justify your answer.

f : → R defined by f(x) = 3 − 4x


Let A = [-1, 1]. Then, discuss whether the following functions from A to itself is one-one, onto or bijective : h(x) = x2 


Show that the exponential function f : R → R, given by f(x) = ex, is one-one but not onto. What happens if the co-domain is replaced by`R0^+` (set of all positive real numbers)?


Show that the logarithmic function  f : R0+ → R   given  by f (x)  loga x ,a> 0   is   a  bijection.


Show that if f1 and f2 are one-one maps from R to R, then the product f1 × f2 : R → R defined by (f1 × f2) (x) = f1 (x) f2 (x) need not be one - one.


Let f = {(3, 1), (9, 3), (12, 4)} and g = {(1, 3), (3, 3) (4, 9) (5, 9)}. Show that gof and fog are both defined. Also, find fog and gof.


 Find fog and gof  if  : f (x) = ex g(x) = loge x .


Find fog and gof  if : f (x) = x2 g(x) = cos x .


Find fog and gof  if : f (x) = x+1, g(x) = `e^x`

.


Find fog and gof  if : f(x)= x + 1, g (x) = 2x + 3 .


If f(x) = sin x and g(x) = 2x be two real functions, then describe gof and fog. Are these equal functions?


   if `f (x) = sqrt(1-x)` and g(x) = `log_e` x are two real functions, then describe functions fog and gof.


State with reason whether the following functions have inverse:

h : {2, 3, 4, 5} → {7, 9, 11, 13} with h = {(2, 7), (3, 9), (4, 11), (5, 13)}


A function f : R → R is defined as f(x) = x3 + 4. Is it a bijection or not? In case it is a bijection, find f−1 (3).


If A = {1, 2, 3, 4} and B = {abcd}, define any four bijections from A to B. Also give their inverse functions.


If A = {abc} and B = {−2, −1, 0, 1, 2}, write the total number of one-one functions from A to B.


Let f : R → Rg : R → R be two functions defined by f(x) = x2 + x + 1 and g(x) = 1 − x2. Write fog (−2).


Write the domain of the real function

`f (x) = sqrt([x] - x) .`


\[f : R \to R \text{given by} f\left( x \right) = x + \sqrt{x^2} \text{ is }\]

 

 


 \[f : A \to \text{B given by } 3^{ f\left( x \right)} + 2^{- x} = 4\] is a bijection, then

 

 

 

 


The function \[f : [0, \infty ) \to \text {R given by } f\left( x \right) = \frac{x}{x + 1} is\]

 

 


If the function\[f : R \to \text{A given by} f\left( x \right) = \frac{x^2}{x^2 + 1}\] is a surjection, then A =

 

 


A function f: R→ R defined by f(x) = `(3x) /5 + 2`, x ∈ R. Show that f is one-one and onto. Hence find f−1.


Let N be the set of natural numbers and the function f: N → N be defined by f(n) = 2n + 3 ∀ n ∈ N. Then f is ______.


Let f: R → R be the function defined by f(x) = 2x – 3 ∀ x ∈ R. write f–1 


Let the function f: R → R be defined by f(x) = cosx, ∀ x ∈ R. Show that f is neither one-one nor onto


Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not

h = {(1,4), (2, 5), (3, 5)}


Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not

k = {(1,4), (2, 5)}


The function f : A → B defined by f(x) = 4x + 7, x ∈ R is ____________.


Let g(x) = x2 – 4x – 5, then ____________.


Let A = R – {3}, B = R – {1}. Let f : A → B be defined by `"f"("x") = ("x" - 2)/("x" - 3)` Then, ____________.


The mapping f : N → N is given by f(n) = 1 + n2, n ∈ N when N is the set of natural numbers is ____________.


An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.

Ravi decides to explore these sets for various types of relations and functions.

  • Let R: B → G be defined by R = { (b1,g1), (b2,g2),(b3,g1)}, then R is ____________.

The solution set of the inequation log1/3(x2 + x + 1) + 1 > 0 is ______.


`x^(log_5x) > 5` implies ______.


Let x is a real number such that are functions involved are well defined then the value of `lim_(t→0)[max{(sin^-1  x/3 + cos^-1  x/3)^2, min(x^2 + 4x + 7)}]((sin^-1t)/t)` where [.] is greatest integer function and all other brackets are usual brackets.


If f: [0, 1]→[0, 1] is defined by f(x) = `(x + 1)/4` and `d/(dx) underbrace(((fofof......of)(x)))_("n"  "times")""|_(x = 1/2) = 1/"m"^"n"`, m ∈ N, then the value of 'm' is ______.


If A = {x ∈ R: |x – 2| > 1}, B = `{x ∈ R : sqrt(x^2 - 3) > 1}`, C = {x ∈ R : |x – 4| ≥ 2} and Z is the set of all integers, then the number of subsets of the set (A ∩ B ∩ C) C ∩ Z is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×