मराठी

A function f: R→ R defined by f(x) = 3x5+2, x ∈ R. Show that f is one-one and onto. Hence find f−1. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

A function f: R→ R defined by f(x) = `(3x) /5 + 2`, x ∈ R. Show that f is one-one and onto. Hence find f−1.

बेरीज

उत्तर

f: R → R defined by f(x) = `(3x)/5 + 2`

First we have to prove that f is one-one function for that we have to prove if f(x1) = f(x2) then x1 = x2

Here f(x) = `(3x)/5 + 2`

Let f(x1) = f(x2)

∴ `(3x_1)/5 + 2 = (3x_2)/5 + 2`

∴ `(3x_1)/5 = (3x_2)/5`

∴ x1 = x2
∴ f is a one-one function.
Now, we have to prove that f is an onto function. Let y ∈ R be such that
y = f(x)

∴ y = `(3x)/5 + 2`

∴ y – 2 =`(3x)/5`

∴ `x = (5(y-2))/3 ∈ R`

∴ for any y ∈ co-domain R, there exist an element x = `(5(y-2))/3` ∈ domain R such that f(x) = y

∴ f is an onto function.
∴ f is one-one onto function.
∴ f-1 exists

∴ f-1(y) = `(5(y-2))/3`

∴ f -1(x) = `(5(x-2))/3`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Functions - Miscellaneous Exercise 2 [पृष्ठ ३२]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 11 Standard Maharashtra State Board
पाठ 2 Functions
Miscellaneous Exercise 2 | Q 2 | पृष्ठ ३२

संबंधित प्रश्‍न

Give examples of two functions fN → Z and gZ → Z such that g o f is injective but gis not injective.

(Hint: Consider f(x) = x and g(x) =|x|)


Show that the function f: ℝ → ℝ defined by f(x) = `x/(x^2 + 1), ∀x in R`is neither one-one nor onto. Also, if g: ℝ → ℝ is defined as g(x) = 2x - 1. Find fog(x)


Show that the logarithmic function  f : R0+ → R   given  by f (x)  loga x ,a> 0   is   a  bijection.


If f : R → (0, 2) defined by `f (x) =(e^x - e^(x))/(e^x +e^(-x))+1`is invertible , find f-1.


Let `f : R - {- 3/5}` → R be a function defined as `f  (x) = (2x)/(5x +3).` 

f-1 : Range of f → `R -{-3/5}`.


If f : R → R is defined by f(x) = 3x + 2, find f (f (x)).


If f(x) = 4 −( x - 7)3 then write f-1 (x).


\[f : Z \to Z\]  be given by

 ` f (x) = {(x/2, ", if  x is even" ) ,(0 , ", if  x  is  odd "):}`

Then,  f is


Let  \[f\left( x \right) = x^2 and g\left( x \right) = 2^x\] Then, the solution set of the equation

\[fog \left( x \right) = gof \left( x \right)\] is 



If \[g \left( f \left( x \right) \right) = \left| \sin x \right| \text{and} f \left( g \left( x \right) \right) = \left( \sin \sqrt{x} \right)^2 , \text{then}\]

 


Let

 \[A = \left\{ x \in R : x \geq 1 \right\}\] The inverse of the function, 

\[f : A \to A\] given by

\[f\left( x \right) = 2^{x \left( x - 1 \right)} , is\]

 


Write about strcmp() function.


For sets A, B and C, let f: A → B, g: B → C be functions such that g o f is injective. Then both f and g are injective functions.


Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not

h = {(1,4), (2, 5), (3, 5)}


Range of `"f"("x") = sqrt((1 - "cos x") sqrt ((1 - "cos x")sqrt ((1 - "cos x")....infty))`


Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. Based on the given information, f is best defined as:


Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.

Answer the following questions using the above information.

  • Let f: R → R be defined by f(x) = x2 is:

Let a and b are two positive integers such that b ≠ 1. Let g(a, b) = Number of lattice points inside the quadrilateral formed by lines x = 0, y = 0, x = b and y = a. f(a, b) = `[a/b] + [(2a)/b] + ... + [((b - 1)a)/b]`, then the value of `[(g(101, 37))/(f(101, 37))]` is ______.

(Note P(x, y) is lattice point if x, y ∈ I)

(where [.] denotes greatest integer function)


Find the domain of sin–1 (x2 – 4).


If f : R `rightarrow` R is defined by `f(x) = (2x - 7)/4`, show that f(x) is one-one and onto.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×