मराठी

If F : R → (0, 2) Defined by `F (X) =(E^X - E^(X))/(E^X +E^(-x))+1`Is Invertible , Find F-1. - Mathematics

Advertisements
Advertisements

प्रश्न

If f : R → (0, 2) defined by `f (x) =(e^x - e^(x))/(e^x +e^(-x))+1`is invertible , find f-1.

उत्तर

 

Injectivity of f :
Let x and y be two elements of domain (R), such that

f (x) = f (y)

⇒ `(e^x - e^(-x))/(e^x -e^(-x)) +1 =(e^y - e^(-y))/(e^y -e^(-y)) + 1`

⇒`(e^x - e^(-x))/(e^x -e^(-x))= (e^y - e^(-y))/(e^y -e^(-y))`

⇒ `(e^-x(e^(2x) -1))/(e^-x(e^(2x)+1)) = (e^-y(e^(2y) -1))/(e^-y(e^(2y)+1)) `

⇒ `(e^(2x) -1)/(e^(2x) +1)  = (e^(2y) -1)/(e^(2y) +1)`

⇒ (e2x−1) (e2y+1) = (e2x+1) (e2y−1)

⇒ e2x+2y + e2x−e2y −1= e2x+2y − e2x + e2y − 1

⇒ 2 × e2x =2 × e2y

⇒ e2x = e2y

⇒ 2x = 2y

⇒ x = y

So, f is one-one.

Surjectivity of f:
Let y be in the co-domain (0,2) such that f(x) = y.

`(e^x - e^-x)/(e^x +e^-x) + 1 = y `

⇒ `(e^-x(e^(2x) -1))/(e^-x(e^(2x)+1))+1 = y`

⇒ `(e^-x(e^(2x) -1))/(e^-x(e^(2x)+1)) = y - 1`

⇒ `e^(2x) -1 = (y - 1) (e^(2y) + 1)`

⇒ `e^(2x) -1 = y xx e^(2x) +y - e^(2x) -1`

⇒ `e^(2x) = y xx e^(2x) + y -e^(2x)`

⇒ `e^(2x) (2- y) = y`

⇒ `e^(2x) = y/(2-y)`

⇒ `2x = log_e (y/(2-y))`

⇒ `x = 1/2  log_e (y/(2 -y)) in R` (domain)

So,  f is onto.

∴ f is a bijection and, hence, it is invertible.

Finding f  -1:

Let f−1 (x) = y           ...(1)

⇒ f (y) = x

⇒ `(e^y - e^-y)/(e^y + e^-y )+ 1 = x`

⇒ `(e^-y(e^(2y) -1))/(e^-y(e^(2y)+1)) + 1 = x`

⇒ `(e^-y(e^(2y) -1))/(e^-y(e^(2y)+1)) = x -1`

⇒ e2y −1 = ( x −1) ( e2y + 1 )

⇒ e2y − 1 = x × e2y + x − e2y − 1

⇒ e2y = x × e2y+ x − e2y

⇒ e2y ( 2 − x ) = x

⇒  `e^(2y)  = x/(2-x)`

⇒`2y = log_e  (x/(2-x))`

⇒`y =1/2 log_e  (x/(2-x)) in R`  (domain)

⇒`y =1/2 log_e  (x/(2-x)) = f^-1 (x)`  [from (1)]

` So,   f^-1  (x)  = 1/2  log_e  (x/(2-x))`

 

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Functions - Exercise 2.4 [पृष्ठ ६९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 2 Functions
Exercise 2.4 | Q 18 | पृष्ठ ६९

व्हिडिओ ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्‍न

Let f: R → R be defined as f(x) = 3x. Choose the correct answer.


Let fR → be defined as f(x) = 10x + 7. Find the function gR → R such that g o f = f o = 1R.


Show that function f: R `rightarrow` {x ∈ R : −1 < x < 1} defined by f(x) = `x/(1 + |x|)`, x ∈ R is one-one and onto function.


Which of the following functions from A to B are one-one and onto?

 f2 = {(2, a), (3, b), (4, c)} ; A = {2, 3, 4}, B = {abc}


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = x3 + 1


Classify the following function as injection, surjection or bijection :

f : Q − {3} → Q, defined by `f (x) = (2x +3)/(x-3)`


Set of ordered pair of  a function? If so, examine whether the mapping is injective or surjective :{(xy) : x is a person, y is the mother of x}


Find gof and fog when f : R → R and g : R → R is defined by  f(x) = x2 + 8 and g(x) = 3x3 + 1 .


Find  fog (2) and gof (1) when : f : R → R ; f(x) = x2 + 8 and g : R → Rg(x) = 3x3 + 1.


Consider f : R → R given by f(x) = 4x + 3. Show that f is invertible. Find the inverse of f.


If A = {1, 2, 3} and B = {ab}, write the total number of functions from A to B.


 If f : R → R be defined by f(x) = x4, write f−1 (1).

If f : C → C is defined by f(x) = x4, write f−1 (1).


If f : R → Rg : R → are given by f(x) = (x + 1)2 and g(x) = x2 + 1, then write the value of fog (−3).


Let f : R → R+ be defined by f(x) = axa > 0 and a ≠ 1. Write f−1 (x).


Let f : R − {−1} → R − {1} be given by\[f\left( x \right) = \frac{x}{x + 1} . \text{Write } f^{- 1} \left( x \right)\]


If f : R → R be defined by f(x) = (3 − x3)1/3, then find fof (x).


If f : R → R is defined by f(x) = 3x + 2, find f (f (x)).


If f(x) = 4 −( x - 7)3 then write f-1 (x).


Let

\[f : R \to R\]
\[f\left( x \right) = \frac{x^2 - 8}{x^2 + 2}\]
Then,  f is


If \[f : R \to R is given by f\left( x \right) = 3x - 5, then f^{- 1} \left( x \right)\] 

 


Let

\[A = \left\{ x \in R : x \leq 1 \right\} and f : A \to A\] be defined as

\[f\left( x \right) = x \left( 2 - x \right)\] Then,

\[f^{- 1} \left( x \right)\] is


Mark the correct alternative in the following question:
Let f :  \[-\] \[\left\{ \frac{3}{5} \right\}\] \[\to\]  R be defined by f(x) = \[\frac{3x + 2}{5x - 3}\] Then,

 


The domain of the function f: R → R defined by f(x) = `sqrt(x^2 - 3x + 2)` is ______


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

g(x) = |x|


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

h(x) = x|x|


Let f: R → R be the functions defined by f(x) = x3 + 5. Then f–1(x) is ______.


The function f : R → R defined by f(x) = 3 – 4x is ____________.


Let f : R → R be defind by f(x) = `1/"x"  AA  "x" in "R".` Then f is ____________.


Let X = {-1, 0, 1}, Y = {0, 2} and a function f : X → Y defiend by y = 2x4, is ____________.


If N be the set of all-natural numbers, consider f: N → N such that f(x) = 2x, ∀ x ∈ N, then f is ____________.


Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin’s sister Raji observed and noted the possible outcomes of the throw every time belongs to set {1,2,3,4,5,6}. Let A be the set of players while B be the set of all possible outcomes.

A = {S, D}, B = {1,2,3,4,5,6}

  • Raji wants to know the number of functions from A to B. How many number of functions are possible?

Let n(A) = 4 and n(B) = 6, Then the number of one – one functions from 'A' to 'B' is:


Let a and b are two positive integers such that b ≠ 1. Let g(a, b) = Number of lattice points inside the quadrilateral formed by lines x = 0, y = 0, x = b and y = a. f(a, b) = `[a/b] + [(2a)/b] + ... + [((b - 1)a)/b]`, then the value of `[(g(101, 37))/(f(101, 37))]` is ______.

(Note P(x, y) is lattice point if x, y ∈ I)

(where [.] denotes greatest integer function)


Let f(n) = `[1/3 + (3n)/100]n`, where [n] denotes the greatest integer less than or equal to n. Then `sum_(n = 1)^56f(n)` is equal to ______.


The graph of the function y = f(x) is symmetrical about the line x = 2, then ______.


Which one of the following graphs is a function of x?

Graph A Graph B

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×