मराठी

Let F : R − {−1} → R − {1} Be Given by - Mathematics

Advertisements
Advertisements

प्रश्न

Let f : R − {−1} → R − {1} be given byf(x)=xx+1.Write f1(x)

उत्तर

Letf1(x)=y...(1)
f(y)=x
yy+1=x
y=xy+x
yxy=x
y(1x)=x
y=x1x
f1(x)=x1x[from(1)]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Functions - Exercise 2.5 [पृष्ठ ७३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 2 Functions
Exercise 2.5 | Q 22 | पृष्ठ ७३

व्हिडिओ ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्‍न

Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. Show that f is one-one.


Which of the following functions from A to B are one-one and onto?
 f1 = {(1, 3), (2, 5), (3, 7)} ; A = {1, 2, 3}, B = {3, 5, 7}


Classify the following function as injection, surjection or bijection : f : N → N given by f(x) = x2


Show that the function f : R − {3} → R − {2} given by f(x) = x-2x-3 is a bijection.


Let A = [-1, 1]. Then, discuss whether the following function from A to itself is one-one, onto or bijective : g(x) = |x|  


Set of ordered pair of  a function? If so, examine whether the mapping is injective or surjective :{(xy) : x is a person, y is the mother of x}


Show that the logarithmic function  f : R0+ → R   given  by f (x)  loga x ,a> 0   is   a  bijection.


Show that if f1 and f2 are one-one maps from R to R, then the product f1 × f2 : R → R defined by (f1 × f2) (x) = f1 (x) f2 (x) need not be one - one.


Let f : N → N be defined by

f(n)={n+1ifn is oddn-1ifn is even

Show that f is a bijection. 

                      [CBSE 2012, NCERT]


Find gof and fog when f : R → R and g : R → R is defined by  f(x) = 2x + x2 and  g(x) = x3


Find gof and fog when f : R → R and g : R → R is  defined by  f(x) = 8x3 and  g(x) = x1/3.


Let fgh be real functions given by f(x) = sin xg (x) = 2x and h (x) = cos x. Prove that fog = go (fh).


Let f be a real function given by f (x)=x-2
Find each of the following:

(i) fof
(ii) fofof
(iii) (fofof) (38)
(iv) f2

Also, show that fof ≠ f2 .


State with reason whether the following functions have inverse:

h : {2, 3, 4, 5} → {7, 9, 11, 13} with h = {(2, 7), (3, 9), (4, 11), (5, 13)}


Show that the function f : Q → Q, defined by f(x) = 3x + 5, is invertible. Also, find f−1


Which of the following graphs represents a one-one function?


If f(x) = x + 7 and g(x) = x − 7, x ∈ R, write fog (7).


What is the range of the function

f(x)=[x-1]x-1?


If f : R → R is defined by f(x) = 3x + 2, find f (f (x)).


Let fg : R → R be defined by f(x) = 2x + l and g(x) = x2−2 for all x

∈ R, respectively. Then, find gof.  [NCERT EXEMPLAR]


Let f be an injective map with domain {xyz} and range {1, 2, 3}, such that exactly one of the following statements is correct and the remaining are false.

f(x)=1,f(y)1,f(z)2.

The value of

f1(1) is 

 


Which of the following functions from

A={x:1x1}

to itself are bijections?

 

 

 


If g(f(x))=|sinx|andf(g(x))=(sinx)2,then

 


The inverse of the function

f:R{xR:x<1} given by

f(x)=exexex+ex is 

 


If f:RR is given by f(x)=x3+3,thenf1(x) is equal to

 


Mark the correct alternative in the following question:
Let f :   {35}   R be defined by f(x) = 3x+25x3 Then,

 


Let f, g: R → R be two functions defined as f(x) = |x| + x and g(x) = x – x ∀ x ∈ R. Then, find f o g and g o f


Let f: R → R be the function defined by f(x) = 2x – 3 ∀ x ∈ R. write f–1 


Are the following set of ordered pairs functions? If so, examine whether the mapping is injective or surjective.
{(a, b): a is a person, b is an ancestor of a}


Let the function f: R → R be defined by f(x) = cosx, ∀ x ∈ R. Show that f is neither one-one nor onto


Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not

h = {(1,4), (2, 5), (3, 5)}


If the set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is ______.


If N be the set of all-natural numbers, consider f: N → N such that f(x) = 2x, ∀ x ∈ N, then f is ____________.


The domain of the function f(x)=1{sin x}+{sin(π+x)} where {.} denotes fractional part, is


Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. Based on the given information, f is best defined as:


Prove that the function f is surjective, where f: N → N such that f(n)={n+12,ifn is oddn2,if n is even Is the function injective? Justify your answer.


Number of integral values of x satisfying the inequality (34)6x+10-x2<2764 is ______.


The domain of function is f(x) = -log0.3(x-1)x2+2x+8 is ______.


Let A = {1, 2, 3, ..., 10} and f : A A be defined as

f(k) = {k+1ifk is odd   kifk is even.

Then the number of possible functions g : A A such that gof = f is ______.


Let A = R – {2} and B = R – {1}. If f: A B is a function defined by f(x) = x-1x-2 then show that f is a one-one and an onto function.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.