मराठी

The Inverse of the Function F : R → { X ∈ R : X < 1 } Given by F ( X ) = E X − E − X E X + E − X is (A) 1 2 Log 1 + X 1 − X (B) 1 2 Log 2 + X 2 − X (C) 1 2 Log 1 − X 1 + X (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

The inverse of the function

\[f : R \to \left\{ x \in R : x < 1 \right\}\] given by

\[f\left( x \right) = \frac{e^x - e^{- x}}{e^x + e^{- x}}\] is 

 

पर्याय

  • \[\frac{1}{2} \log \frac{1 + x}{1 - x}\]

  •  \[\frac{1}{2} \log \frac{2 + x}{2 - x}\]

  • \[\frac{1}{2} \log \frac{1 - x}{1 + x}\]

  • none of these

MCQ

उत्तर

\[\text{Let} f^{- 1} \left( x \right) = y . . . \left( 1 \right)\] 
\[ \Rightarrow f\left( y \right) = x\] 
\[ \Rightarrow \frac{e^y - e^{- y}}{e^y + e^{- y}} = x\] 
\[ \Rightarrow \frac{e^{- y} \left( e^{2y} - 1 \right)}{e^{- y} \left( e^{2y} + 1 \right)} = x\] 
\[ \Rightarrow \left( e^{2y} - 1 \right) = x\left( e^{2y} + 1 \right)\] 
\[ \Rightarrow e^{2y} - 1 = x e^{2y} + x\] 
\[ \Rightarrow e^{2y} \left( 1 - x \right) = x + 1\] 
\[ \Rightarrow e^{2y} = \frac{1 + x}{1 - x}\] 
\[ \Rightarrow 2y = \log_e \left( \frac{1 + x}{1 - x} \right)\] 
\[ \Rightarrow y = \frac{1}{2}l {og}_e \left( \frac{1 + x}{1 - x} \right)\] 
\[ \Rightarrow f^{- 1} \left( x \right) = \frac{1}{2}l {og}_e \left( \frac{1 + x}{1 - x} \right) [\text{from}\left( 1 \right)]\] 

So, the answer is (a).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Functions - Exercise 2.6 [पृष्ठ ७८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 2 Functions
Exercise 2.6 | Q 33 | पृष्ठ ७८

व्हिडिओ ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्‍न

Following the case, state whether the function is one-one, onto, or bijective. Justify your answer.

f: → R defined by f(x) = 1 + x2


Let f: R → R be defined as f(x) = x4. Choose the correct answer.


Let f: R → R be defined as f(x) = 3x. Choose the correct answer.


Show that the function f: ℝ → ℝ defined by f(x) = `x/(x^2 + 1), ∀x in R`is neither one-one nor onto. Also, if g: ℝ → ℝ is defined as g(x) = 2x - 1. Find fog(x)


Classify the following function as injection, surjection or bijection : f : N → N given by f(x) = x2


Classify the following function as injection, surjection or bijection :  f : Z → Z given by f(x) = x2


Classify the following function as injection, surjection or bijection :

f : Q → Q, defined by f(x) = x3 + 1


Let A = {1, 2, 3}. Write all one-one from A to itself.


Give examples of two one-one functions f1 and f2 from R to R, such that f1 + f2 : R → R. defined by (f1 + f2) (x) = f1 (x) + f2 (x) is not one-one.


Find gof and fog when f : R → R and g : R → R is defined by  f(x) = 2x + x2 and  g(x) = x3


Let R+ be the set of all non-negative real numbers. If f : R+ → R+ and g : R+ → R+ are defined as `f(x)=x^2` and `g(x)=+sqrtx` , find fog and gof. Are they equal functions ?


If f : A → B and g : B → C are one-one functions, show that gof is a one-one function.


 Find fog and gof  if  : f (x) = ex g(x) = loge x .


Find fog and gof  if : f(x) = c, c ∈ R, g(x) = sin `x^2`


Let f(x) = x2 + x + 1 and g(x) = sin x. Show that fog ≠ gof.


Let f be a real function given by f (x)=`sqrt (x-2)`
Find each of the following:

(i) fof
(ii) fofof
(iii) (fofof) (38)
(iv) f2

Also, show that fof ≠ `f^2` .


Let f : [−1, ∞) → [−1, ∞) be given by f(x) = (x + 1)2 − 1, x ≥ −1. Show that f is invertible. Also, find the set S = {x : f(x) = f−1 (x)}.


 If f : R → R be defined by f(x) = x4, write f−1 (1).

If f : C → C is defined by f(x) = x4, write f−1 (1).


Let A = {x ∈ R : −4 ≤ x ≤ 4 and x ≠ 0} and f : A → R be defined by \[f\left( x \right) = \frac{\left| x \right|}{x}\]Write the range of f.


Let f : R → R+ be defined by f(x) = axa > 0 and a ≠ 1. Write f−1 (x).


Write the domain of the real function f defined by f(x) = `sqrt (25 -x^2)`   [NCERT EXEMPLAR]


Let A = {abcd} and f : A → A be given by f = {( a,b ),( b , d ),( c , a ) , ( d , c )} write `f^-1`. [NCERT EXEMPLAR]


If a function g = {(1, 1), (2, 3), (3, 5), (4, 7)} is described by g(x) = \[\alpha x + \beta\]  then find the values of \[\alpha\] and \[ \beta\] . [NCERT EXEMPLAR]


A function f  from the set of natural numbers to integers defined by

`{([n-1]/2," when  n is  odd"   is ),(-n/2,when  n  is  even ) :}`

 

 


The function \[f : R \to R\] defined by

\[f\left( x \right) = 6^x + 6^{|x|}\] is 

 


 Let
\[g\left( x \right) = 1 + x - \left[ x \right] \text{and} f\left( x \right) = \begin{cases}- 1, & x < 0 \\ 0, & x = 0, \\ 1, & x > 0\end{cases}\] where [x] denotes the greatest integer less than or equal to x. Then for all \[x, f \left( g \left( x \right) \right)\] is equal to


Let

\[f : [2, \infty ) \to X\] be defined by

\[f\left( x \right) = 4x - x^2\] Then, f is invertible if X =

 


Mark the correct alternative in the following question:

If the set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is


Let A = R − (2) and B = R − (1). If f: A ⟶ B is a function defined by`"f(x)"=("x"-1)/("x"-2),` how that f is one-one and onto. Hence, find f−1


Let f: R → R be the function defined by f(x) = 4x – 3 ∀ x ∈ R. Then write f–1 


Are the following set of ordered pairs functions? If so, examine whether the mapping is injective or surjective.
{(x, y): x is a person, y is the mother of x}


Let A = {1, 2, 3, ...n} and B = {a, b}. Then the number of surjections from A into B is ______.


Let f: R → R be defined by f(x) = `1/x` ∀ x ∈ R. Then f is ______.


The function f : R → R defined by f(x) = 3 – 4x is ____________.


If N be the set of all-natural numbers, consider f: N → N such that f(x) = 2x, ∀ x ∈ N, then f is ____________.


Write the domain and range (principle value branch) of the following functions:

f(x) = tan–1 x.


Let f(x) be a polynomial function of degree 6 such that `d/dx (f(x))` = (x – 1)3 (x – 3)2, then

Assertion (A): f(x) has a minimum at x = 1.

Reason (R): When `d/dx (f(x)) < 0, ∀  x ∈ (a - h, a)` and `d/dx (f(x)) > 0, ∀  x ∈ (a, a + h)`; where 'h' is an infinitesimally small positive quantity, then f(x) has a minimum at x = a, provided f(x) is continuous at x = a.


Which one of the following graphs is a function of x?

Graph A Graph B

The trigonometric equation tan–1x = 3tan–1 a has solution for ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×