हिंदी

The Inverse of the Function F : R → { X ∈ R : X < 1 } Given by F ( X ) = E X − E − X E X + E − X is (A) 1 2 Log 1 + X 1 − X (B) 1 2 Log 2 + X 2 − X (C) 1 2 Log 1 − X 1 + X (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

The inverse of the function

\[f : R \to \left\{ x \in R : x < 1 \right\}\] given by

\[f\left( x \right) = \frac{e^x - e^{- x}}{e^x + e^{- x}}\] is 

 

विकल्प

  • \[\frac{1}{2} \log \frac{1 + x}{1 - x}\]

  •  \[\frac{1}{2} \log \frac{2 + x}{2 - x}\]

  • \[\frac{1}{2} \log \frac{1 - x}{1 + x}\]

  • none of these

MCQ

उत्तर

\[\text{Let} f^{- 1} \left( x \right) = y . . . \left( 1 \right)\] 
\[ \Rightarrow f\left( y \right) = x\] 
\[ \Rightarrow \frac{e^y - e^{- y}}{e^y + e^{- y}} = x\] 
\[ \Rightarrow \frac{e^{- y} \left( e^{2y} - 1 \right)}{e^{- y} \left( e^{2y} + 1 \right)} = x\] 
\[ \Rightarrow \left( e^{2y} - 1 \right) = x\left( e^{2y} + 1 \right)\] 
\[ \Rightarrow e^{2y} - 1 = x e^{2y} + x\] 
\[ \Rightarrow e^{2y} \left( 1 - x \right) = x + 1\] 
\[ \Rightarrow e^{2y} = \frac{1 + x}{1 - x}\] 
\[ \Rightarrow 2y = \log_e \left( \frac{1 + x}{1 - x} \right)\] 
\[ \Rightarrow y = \frac{1}{2}l {og}_e \left( \frac{1 + x}{1 - x} \right)\] 
\[ \Rightarrow f^{- 1} \left( x \right) = \frac{1}{2}l {og}_e \left( \frac{1 + x}{1 - x} \right) [\text{from}\left( 1 \right)]\] 

So, the answer is (a).

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Functions - Exercise 2.6 [पृष्ठ ७८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 2 Functions
Exercise 2.6 | Q 33 | पृष्ठ ७८

वीडियो ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्न

Check the injectivity and surjectivity of the following function:

f: N → N given by f(x) = x2


Check the injectivity and surjectivity of the following function:

f: → N given by f(x) = x3


Following the case, state whether the function is one-one, onto, or bijective. Justify your answer.

f : → R defined by f(x) = 3 − 4x


Following the case, state whether the function is one-one, onto, or bijective. Justify your answer.

f: → R defined by f(x) = 1 + x2


Let A = {−1, 0, 1, 2}, B = {−4, −2, 0, 2} and f, g: A → B be functions defined by f(x) = x2 − x, x ∈ A and g(x) = `2|x - 1/2|- 1, x in A`. Are f and g equal?

Justify your answer. (Hint: One may note that two functions f: A → B and g: A → B such that f(a) = g(a) ∀ a ∈ A are called equal functions).


Let A = {−1, 0, 1} and f = {(xx2) : x ∈ A}. Show that f : A → A is neither one-one nor onto.


Classify the following function as injection, surjection or bijection : f : N → N given by f(x) = x3


Classify the following function as injection, surjection or bijection :

f : Z → Z, defined by f(x) = x2 + x


Classify the following function as injection, surjection or bijection :

f : Q − {3} → Q, defined by `f (x) = (2x +3)/(x-3)`


Classify the following function as injection, surjection or bijection :
f : R → R, defined by f(x) = 5x3 + 4


Find gof and fog when f : R → R and g : R → R is defined by  f(x) = x2 + 2x − 3 and  g(x) = 3x − 4 .


Find gof and fog when f : R → R and g : R → R is  defined by  f(x) = 8x3 and  g(x) = x1/3.


Verify associativity for the following three mappings : f : N → Z0 (the set of non-zero integers), g : Z0 → Q and h : Q → R given by f(x) = 2xg(x) = 1/x and h(x) = ex.


If f : A → B and g : B → C are one-one functions, show that gof is a one-one function.


Find fog and gof  if : f(x)= x + 1, g (x) = 2x + 3 .


Let

f (x) =`{ (1 + x, 0≤ x ≤ 2) , (3 -x , 2 < x ≤ 3):}`

Find fof.


Find f −1 if it exists : f : A → B, where A = {1, 3, 5, 7, 9}; B = {0, 1, 9, 25, 49, 81} and f(x) = x2


Consider f : {1, 2, 3} → {abc} and g : {abc} → {apple, ball, cat} defined as f (1) = af (2) = bf (3) = cg (a) = apple, g (b) = ball and g (c) =  cat. Show that fg and gof are invertible. Find f−1g−1 and gof−1and show that (gof)−1 = f 1o g−1


Let f be a function from R to R, such that f(x) = cos (x + 2). Is f invertible? Justify your answer.


If f : R → Rg : R → are given by f(x) = (x + 1)2 and g(x) = x2 + 1, then write the value of fog (−3).


Write the domain of the real function

`f (x) = sqrtx - [x] .`


Write the domain of the real function

`f (x) = sqrt([x] - x) .`


If f(x) = x + 7 and g(x) = x − 7, x ∈ R, write fog (7).


If f : {5, 6} → {2, 3} and g : {2, 3} → {5, 6} are given by f = {(5, 2), (6, 3)} and g = {(2, 5), (3, 6)}, then find fog.    [NCERT EXEMPLAR]


Which of the following functions from

\[A = \left\{ x : - 1 \leq x \leq 1 \right\}\]

to itself are bijections?

 

 

 


Mark the correct alternative in the following question:

Let f : → R be given by f(x) = tanx. Then, f-1(1) is

 

 


Mark the correct alternative in the following question:
Let f :  \[-\] \[\left\{ \frac{3}{5} \right\}\] \[\to\]  R be defined by f(x) = \[\frac{3x + 2}{5x - 3}\] Then,

 


Let f: R → R be the function defined by f(x) = 2x – 3 ∀ x ∈ R. write f–1 


Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not

k = {(1,4), (2, 5)}


The mapping f : N → N is given by f(n) = 1 + n2, n ∈ N when N is the set of natural numbers is ____________.


If N be the set of all-natural numbers, consider f: N → N such that f(x) = 2x, ∀ x ∈ N, then f is ____________.


Range of `"f"("x") = sqrt((1 - "cos x") sqrt ((1 - "cos x")sqrt ((1 - "cos x")....infty))`


Let the function f: R → R be defined by f(x) = 4x – 1, ∀ x ∈ R then 'f' is


Let f: R→R be defined as f(x) = 2x – 1 and g: R – {1}→R be defined as g(x) = `(x - 1/2)/(x - 1)`. Then the composition function f (g(x)) is ______.


Let [x] denote the greatest integer ≤ x, where x ∈ R. If the domain of the real valued function f(x) = `sqrt((|[x]| - 2)/(|[x]| - 3)` is (–∞, a) ∪ [b, c) ∪ [4, ∞), a < b < c, then the value of a + b + c is ______.


Let f(1, 3) `rightarrow` R be a function defined by f(x) = `(x[x])/(1 + x^2)`, where [x] denotes the greatest integer ≤ x, Then the range of f is ______.


Let f(n) = `[1/3 + (3n)/100]n`, where [n] denotes the greatest integer less than or equal to n. Then `sum_(n = 1)^56f(n)` is equal to ______.


Write the domain and range (principle value branch) of the following functions:

f(x) = tan–1 x.


Which one of the following graphs is a function of x?

Graph A Graph B

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×