हिंदी

Which of the Following Functions from a = { X : − 1 ≤ X ≤ 1 } to Itself Are Bijections? (A) F ( X ) = X 2 (B) G ( X ) = Sin ( π X 2 ) (C) H ( X ) = | X | (D) K ( X ) = X 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Which of the following functions from

\[A = \left\{ x : - 1 \leq x \leq 1 \right\}\]

to itself are bijections?

 

 

 

विकल्प

  • \[f\left( x \right) = \frac{x}{2}\]

  • \[g\left( x \right) = \sin\left( \frac{\pi x}{2} \right)\]

  • \[h\left( x \right) = |x|\]

  • \[k\left( x \right) = x^2\]

MCQ

उत्तर

\[\left( a \right) \text{Range of f}=\left[ \frac{- 1}{2}, \frac{1}{2} \right]\neq A\] 
So, f is not a bijection. 
\[\left( b \right) \text{Range }=\left[ \sin\left( \frac{- \pi}{2} \right), \sin\left( \frac{\pi}{2} \right) \right]=\left[ - 1, 1 \right]=A\] 
So, g is a bijection.
\[\left( c \right) h\left( - 1 \right) = \left| - 1 \right| = 1\] 
\[\text{ and } h\left( 1 \right) = \left| 1 \right| = 1\] 
\[\Rightarrow-1 \text {and 1 have the same images}\] 
So, h is not a bijection. 
\[\]  \[\left( d \right) k\left( - 1 \right) = \left( - 1 \right)^2 = 1\] 
\[\text{and } k \left( 1 \right) = \left( 1 \right)^2 = 1\] 
\[\Rightarrow-1 \text{and 1 have the same images}\] 
So, k is not a bijection.

So, the answer is (b)

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Functions - Exercise 2.6 [पृष्ठ ७६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 2 Functions
Exercise 2.6 | Q 15 | पृष्ठ ७६

वीडियो ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्न

Prove that the greatest integer function f: → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.


Find the number of all onto functions from the set {1, 2, 3, …, n} to itself.


Classify the following function as injection, surjection or bijection :  f : Z → Z given by f(x) = x3


Set of ordered pair of a function ? If so, examine whether the mapping is injective or surjective :{(ab) : a is a person, b is an ancestor of a


If A = {1, 2, 3}, show that a one-one function f : A → A must be onto.


Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of each of the following:
(i) an injective map from A to B
(ii) a mapping from A to B which is not injective
(iii) a mapping from A to B.


Give examples of two functions f : N → Z and g : Z → Z, such that gof is injective but gis not injective.


If f : A → B and g : B → C are one-one functions, show that gof is a one-one function.


Find fog and gof  if : f (x) = x2 g(x) = cos x .


If f(x) = sin x and g(x) = 2x be two real functions, then describe gof and fog. Are these equal functions?


State with reason whether the following functions have inverse :
f : {1, 2, 3, 4} → {10} with f = {(1, 10), (2, 10), (3, 10), (4, 10)}


If f : R → (−1, 1) defined by `f (x) = (10^x- 10^-x)/(10^x + 10 ^-x)` is invertible, find f−1.


Let f : [−1, ∞) → [−1, ∞) be given by f(x) = (x + 1)2 − 1, x ≥ −1. Show that f is invertible. Also, find the set S = {x : f(x) = f−1 (x)}.


If A = {1, 2, 3, 4} and B = {abcd}, define any four bijections from A to B. Also give their inverse functions.


Which one of the following graphs represents a function?


If A = {abc} and B = {−2, −1, 0, 1, 2}, write the total number of one-one functions from A to B.


If f(x) = 4 −( x - 7)3 then write f-1 (x).


Let f be an injective map with domain {xyz} and range {1, 2, 3}, such that exactly one of the following statements is correct and the remaining are false.

\[f\left( x \right) = 1, f\left( y \right) \neq 1, f\left( z \right) \neq 2 .\]

The value of

\[f^{- 1} \left( 1 \right)\] is 

 


 Let
\[g\left( x \right) = 1 + x - \left[ x \right] \text{and} f\left( x \right) = \begin{cases}- 1, & x < 0 \\ 0, & x = 0, \\ 1, & x > 0\end{cases}\] where [x] denotes the greatest integer less than or equal to x. Then for all \[x, f \left( g \left( x \right) \right)\] is equal to


Let

\[f : [2, \infty ) \to X\] be defined by

\[f\left( x \right) = 4x - x^2\] Then, f is invertible if X =

 


Let 
\[f : R \to R\]  be given by \[f\left( x \right) = x^2 - 3\] Then, \[f^{- 1}\] is given by 

 


Mark the correct alternative in the following question:

If the set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is


Let the function f: R → R be defined by f(x) = 4x – 1, ∀ x ∈ R. Then, show that f is one-one.


Let f: R – `{3/5}` → R be defined by f(x) = `(3x + 2)/(5x - 3)`. Then ______.


Let f: R → R be given by f(x) = tan x. Then f–1(1) is ______.


If f(x) = (4 – (x – 7)3}, then f–1(x) = ______.


The function f : A → B defined by f(x) = 4x + 7, x ∈ R is ____________.


Which of the following functions from Z into Z is bijective?


Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. Based on the given information, f is best defined as:


Given a function If as f(x) = 5x + 4, x ∈ R. If g : R → R is inverse of function ‘f then


A general election of Lok Sabha is a gigantic exercise. About 911 million people were eligible to vote and voter turnout was about 67%, the highest ever


Let I be the set of all citizens of India who were eligible to exercise their voting right in the general election held in 2019. A relation ‘R’ is defined on I as follows:

R = {(V1, V2) ∶ V1, V2 ∈ I and both use their voting right in the general election - 2019}

  • Mr. ’X’ and his wife ‘W’ both exercised their voting right in the general election-2019, Which of the following is true?

Let f: R → R defined by f(x) = x4. Choose the correct answer


Let [x] denote the greatest integer ≤ x, where x ∈ R. If the domain of the real valued function f(x) = `sqrt((|[x]| - 2)/(|[x]| - 3)` is (–∞, a) ∪ [b, c) ∪ [4, ∞), a < b < c, then the value of a + b + c is ______.


If log102 = 0.3010.log103 = 0.4771 then the number of ciphers after decimal before a significant figure comes in `(5/3)^-100` is ______.


Let f(x) be a polynomial of degree 3 such that f(k) = `-2/k` for k = 2, 3, 4, 5. Then the value of 52 – 10f(10) is equal to ______.


Write the domain and range (principle value branch) of the following functions:

f(x) = tan–1 x.


Let f(x) be a polynomial function of degree 6 such that `d/dx (f(x))` = (x – 1)3 (x – 3)2, then

Assertion (A): f(x) has a minimum at x = 1.

Reason (R): When `d/dx (f(x)) < 0, ∀  x ∈ (a - h, a)` and `d/dx (f(x)) > 0, ∀  x ∈ (a, a + h)`; where 'h' is an infinitesimally small positive quantity, then f(x) has a minimum at x = a, provided f(x) is continuous at x = a.


The trigonometric equation tan–1x = 3tan–1 a has solution for ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×